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Abstract

The principal concern of the thesis is to understand and uncover interaction-related
effects—termed, interactional effects—that arise from the interaction of systems. We
may describe the common situation of interest as small entities of systems coming
together, interacting, and producing as an aggregate a behavior that would not have
occurred without interaction. Those situations are fundamental and appear in count-
less settings, particularly in settings exhibiting cascade-like intuition. The goal of
the research is to show that one can extract from a system the potential it has to
generate such effects, and use those extracts to reconstruct, or characterize, the phe-
nomena that emerge upon interaction. In technical terms, we expose cascade-like
effects as a loss of exactness, and reveal them as (co)homological intuition waiting to
be formalized.

We propose a means to relate properties of an interconnected system to its sepa-
rate component systems in the presence of cascade-like effects. Building on a theory
of interconnection reminiscent of the behavioral approach to systems theory, we intro-
duce the notion of generativity, and its byproduct, generative effects. Cascade effects
are seen as instances of generative effects. The latter are precisely the instances where
properties of interest are not preserved or behave very badly when systems interact.
The work overcomes that obstruction. We show how to extract algebraic objects (e.g.,
vectors spaces) from the systems, that encode their generativity: their potential to
generate new phenomena upon interaction. Those objects may then be used to link
the properties of the interconnected system to its separate systems. Such a link will
be executed through the use of exact sequences from commutative algebra.
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Chapter 1

Introduction

The principal concern of the thesis is to understand and uncover interaction-related
effects—termed, interactional effects—that arise from the interaction of systems. We
may describe the common situation of interest as small entities of systems coming
together, interacting, and producing as an aggregate a behavior that would not have
occured without interaction. Those situations are fundamental and appear in count-
less settings, two of which are contagion effects in societal systems, and cascading
failures in infrastructures. The goal of the research is to show that one can extract
from a system the potential it has to generate such effects, and use those extracts to
reconstruct, or characterize, the phenomena that emerge upon interaction.

The thesis proposes a means to relate properties of an interconnected system to
its separate component systems in the presence of cascade-like effects. Building on a
theory of interconnection reminiscent of the behavioral approach to system theory, it
introduces the notion of generativity, and its byproduct, generative effects. Cascade
effects, enclosing contagion phenomena and cascading failures, are seen as instances of
generative effects. The latter are precisely the instances where properties of interest
are not preserved or behave very badly when systems interact. The goal of the work
is to overcome that obstruction. We show how to extract algebraic objects (e.g.
vectors spaces) from the systems, that encode their generativity: their potential to
generate new phenomena upon interaction. Those objects may then be used to link
the properties of the interconnected system to its separate systems. Such a link will
be executed through the use of exact sequences from commutative algebra.
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On the abstract structure of the behavioral approach. . . . . . 31
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How to make cascade effects linear. . . . . . . . . . . . . . . . 33

1.6.9 Chapter 10 –
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1.1 The phenomenon and the problem.

The work begins by understanding cascade effects. An intuitive instance of such ef-
fects is embodied by a trail of falling dominos. The fall of a domino triggers the fall
of its successor in the sequence. If the first domino falls, then the whole sequence
of dominoes collapses by induction. On a more pressing end, these effects pervade
exinctions in ecosystems, spreads of epidemics, financial crises, power blackouts, cas-
cading failures of infrastructures, propogation of delays, societal adoption trends and
diffusion of innovation. Those effects prove to be detrimental in some instances, and
a potential to harness in others. There is quite an interest in understanding such
effects, and an everincreasing need to do so. Many (mathematical) models are pro-
posed to handle such situations, however we seem to be rather far from a fundamental
(universal) understanding of the phenomenon. For one, most of the intuition floating
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around is still intangible, and a good number of essential words are detached from a
clear natural meaning. The term cascade effects is itself informal, vague and prone to
many interpretations. Nevertheless, some intuition does exist to give rise to the term.
The question is then how to capture that intuition mathematically in a universal way.

So we begin by asking: what are cascade effects? And where do they come from?
For the purpose of answering the question, we will momentarily interpret the term
cascade effects broadly. We will then replace it with the term of interactional effects.
Intuitively, yet informally, those are phenomena that emerge from the interaction
of several systems. The thesis will be concerned with interactional effects that are
generative in nature, termed generative effects. Those will be argued, later on in the
thesis, to enclose the informal cascading phenomena. The thesis will also formally
argue that interactional effects may in general be cast as generative effects.

1.1.1 An analogy.

We will anecdotedly illustrate the emergence of interactional effects through the emer-
gence of magic. We are referring to magic that arises, from a performing art, from
either parlor tricks or sleight of hand. Although the analogy is anecdotal, the thesis
formalizes it later on. In a nutshell, there is no magic for the performing magician,
there can only be magic for the observing audience. For convenience, we will have
our performing Magician go by the name Merlin, and our observing Audience go by
the name Arthur.

Merlin skillfully performs to Arthur his most intricate magical trick in his reper-
toire. Arthur is impressed, as he should be, and senses some magic. Merlin now
performs the same trick again to Arthur, but he performs it slowly. Arthur begins
to see more than what he had seen before. Somehow the magic starts to go away.
Merlin may even go further in explaining exactly what he is doing. The magic then
dwindles, up to a limit point where it does not exist anymore. However, throughout
the performance, the trick itself has not changed at all. The only thing that changed
is the ability for Arthur to see initially-hidden things. To further expound, if Merlin
performed his trick again, in all its quickness, yet behind an opaque curtain, then
Arthur will see nothing. There can be no magic for Arthur in this case. Merlin can
also vary the amount of magic exhibited by the trick by concealing some parts of it
and making explicit some other parts.

Indeed, the reason magic appears in Merlin’s first performance is because Arthur
cannot perceive everything. The dexterity of Merlin and the intricate design of the
trick cast a veil on the workings of the trick. Dually, Arthur’s humane lack of super-
natural abilities to see and understand casts a veil on the trick. There are things that
Arthur can observe, and there are other things that are hidden to him and cannot
be seen. Athur then builds up an expectation based on what he can see. He then
declares magic whenever he cannot explain the discrepancy between his expectation
and the actual happening.

The veil on the trick is Arthur’s inability to observe everything. The veil causes
magic to emerge. But there is also an underlying ingredient: that of Merlin per-
forming the trick and Arthur building his expectation. The trick is seen to consist of
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several small pieces of tricks combined. The big trick is performed by combining or
interconnecting the small pieces tricks, causing them to interact. Magic then emerges
as follows. Arthur recognizes the small tricks, and creates an expectation of what
each ought to perform. On one end, he combines the small tricks devoid of magic,
namely his small expectations, and builds a big expectation on the whole trick. On
another end, he observes the final development of Merlin’s trick. He then compares
his big expectation to the outcome of Merlin’s trick. If there is a discrepency, there
is magic. If there is no discrepency, Arthur is unmoved and is the least confused.

Back to the systems.

How does the anecdote cast back into our setting? The tricks will be our systems,
with all their complexities. We then cast a veil on the space of systems. The veil
will either conceal mechanisms in a system or hide some of its characteristics. What
remains visible is observable, and is termed the phenome. Phenomes ought to be
thought of as simplified systems. Those are Arthur’s expectations. Interactional
effects are then said to emerge whenever the phenome of the interconnected system,
cannot be explained by interconnecting or combining the phenomes of the separate
systems.

1.1.2 The mathematical sketch.

Thus a definition of interactional effects would need (at least) two ingredients. The
first is a notion of interaction or interconnection of systems. However, such a notion
by itself cannot give rise to interactional effects. The interconnection of two systems
only gives an interconnected system, and nothing more. The second ingredient then
consists of equipping the theory of interconnection with a notion of interactional-
effects. Such effects emerge once we conceal features from a systems, by declaring
what is observable from the system. The ingredients may be summarized through
the diagram:

〈P,+〉 Φ←−−− 〈S,⊕〉
The space 〈S,⊕〉 represents the space of systems. For simpliciy, S is a set, and

⊕ is a binary operator on S. The sum s1 ⊕ s2 denotes the interaction of s1 and s2.
The map Φ represents the veil, sending a system to its observable part, its phenome,
in P . The set P ought to be thought of as a space of simplified systems, and thus
gains a notion of interaction through the + operator. Of course, the elements of this
diagram are not arbitrary, and the complete mathematical diagram is slightly more
intricate. We will expound it in the next subsection.

Regardless, interactional effects are then said to emerge whenever:

Φ(s1 ⊕ s2) 6= Φ(s1) + Φ(s2)

Interactional effects are sustained by the veil whenever the phenome of the com-
bined system cannot be explained by the phenome of the separate systems. The
inequality we obtain is then fundamental. If the inequality is not present,
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our intuition for interactional phenomena vanishes. If the inequality is present, the
intuition emerges.

Interactional effects are then encoded in the inequality, or more precisely in the
properties of the veil. The fundamental question is then: how do we cope with
the inequality? How do we mend the inexactness. We thus view the fundamental
question as to how to uncover interactional effects emerging from the interaction of
systems. Relatedly, how can we relate the phenome of the interconnected system to
that of its separate parts despite the presence of interactional effects? We deem this
question fundamental as it does not dissolve in the most general setting we can think
of capturing the intuition we’re after. Yet, even in this generality we can obtain good
answers. To formally answer the question, we would first need to give a summarized
formal account of the question, and the work.

1.2 The summary

We define a sandbox to be a pair (S,≤) of a set S and a transitive binary relation
≤ on S × S. Transitivity means that if a ≤ b and b ≤ c, then a ≤ c. The set S is
interpreted to be a set of systems, and a ≤ b indicates that a is a subsystem of b.
The relation ≤ enables systems to interact in the following manner. We define an
interact operation ∨ : S × S → S that sends a pair of systems (a, b) to the smallest
system containing both a and b as subsystems. The ∨ operation embodies that a
system resulting from the interaction, or interconnection, of a and b ought to contain
both a and b as parts, and is a subsystem of any other system containing both a and
b. Such an operation may not be defined, but we assume, for this overview, that the
relation ≤ is such that the operation is well defined for every pair of systems.

We are then given a sandbox (S,≤) and an interact operation ∨. Those objects
define our theory of interconnection. Yet, our theory of interconnection is not enough
to produce interactional effects. The interactional effects can only emerge once we
decide to conceal either mechanisms or characteristics of systems.

We define a quasi-veil to be a pair (Φ,P) of a sandbox (P ,v) and a map Φ : S → P
such that a ≤ b implies Φ(a) v Φ(b), i.e., preserving the subsystem relation. The
quasi-veil is intended to partially cover the sandbox, leaving the systems in play
partially observed. We interpret (P ,v) as the sandbox of phenomes, of what in the
systems is chosen to be observable to us. By choosing what we wish to observe, we
automatically choose what we wish to conceal. As (P ,v) is a sandbox, it acquires an
interact operator t. Interactional effects are said to have emerged, or to be sustained
by the quasi-veil, during the interaction of a and b, when:

Φ(a ∨ b) 6= Φ(a) t Φ(b). (1.1)

Interactional effects would have emerged when the phenome of the separate systems,
cannot explain the phenome of interconnected system. A great deal of situations may
be put into this form.

We then ask the following question, considered in the thesis at almost the same
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structural level:

Question. Given a sandbox (S,≤) and a quasi-veil (Φ,P) that sustains interactional
effects, how can we express or characterize Φ(a ∨ b) non-trivially through Φ(a), Φ(b)
and other information on a, b, and potentially a common subsystem a ∧ b.

How can we relate the behavior of the interconnected system to that of its subsys-
tems despite the presence of interactional effects? Although the mathematical answer
to the question may appear cryptic if one is not familiar with the terms, we provide
it for completeness. We nevertheless illustrate it with a simple accessible example.

The Answer. We can generally construct a cohomology theory whose zeroth-order
terms encode the phenome. The higher-order cohomology objects encode the systems’
potential to produce interactional effects, and may be used to relate the phenome of
the interconnected system to its separate system.

As promised, we illustrate the answer through an example.

1.2.1 The example.

Given two matrices A ∈ Rm×n and B ∈ Rm×n′ :[
A
] [

B
]
,

our goal is to understand the kernel of the m× (n+ n′) matrix:[
C
]

:=
[
A B

]
consiting of the concatenation of the separate matrices. The matrix C inherits the
kernels of both A and B, but A and B interact so as to generate new elements in the
kernel of C. In general, we have:

kerC 6= kerA⊕ kerB.

Of course we can simply compute the kernel of the big matrix, yet we get no insight
on the interaction. But our theory give us that:

kerC = kerA⊕ kerB ⊕ (imA ∩ imB).1

The elements of kerA ⊕ kerB are already known to be part of the kernel from the
separate systems. The newly generated elements are encoded in imA ∩ imB and
correspond to the interaction of the two matrices. The theory then tells us that we
further need only to keep the images of the separate matrices to characterize kerC.

1Equality here is an isomorphism. The space (imA∩ imB) is not a subspace of Rn+n′
, but every

element of it corresponds to an equivalence class in kerC modulo (kerA + kerB). The dimensions
of the two sides are equal. But we cannot automatically deduce a basis for kerC from the charac-
terization. We can deduce a basis for kerC if we have a basis for imA∩ imB in Rm and collect, for
each element of it, one preimage with respect to A and B separately (any preimage would do).
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One obviously cannot reconstruct a matrix only knowing its image and its kernel. In
the case where the matrices are very fat, i.e., m � n, then keeping the image yields
a major computational benefit.

1.2.2 As sandboxes and quasi-veils.

We can cast the example through sandboxes and quasi-veils. Let C be a finite subset
of Rm, and define S to be powerset of C. We then obtain a sandbox (S,⊆), where
the interact operation ∪ is set union. A system {c1, · · · , ck} of S defines a unique
matrix with columns c1, · · · , ck, up to column reordering. We will fix a unique order
by ordering the elements of C. Given two system A and B, their interaction yields a
system, consisting of forming the unique matrix with the columns in A ∪ B. Thus if
A and B are disjoint, then A ∪B yields the concatenation of the separate matrices.

The sandbox of phenomes (P ,⊆) is the set of linear subspaces of R|C| ordered
by inclusion, where the interact operation + is set union followed by the linear span
closure. The veil Φ sends a set A to the kernel of its corresponding matrix, which
can be seen as an element of P . The map Φ is obviously inclusion preserving. We
generally get:

Φ(A ∪B) 6= Φ(A) + Φ(B)

If A and B are disjoint sets, our theory gives us:

Φ(A ∪B) 6= (Φ(A) + Φ(B))⊕ (imA ∩ imB)

If A and B are not disjoint sets, then we define D = A ∩B and our theory gives us:

Φ(A ∪B) 6= (Φ(A) + Φ(B))⊕ (imA ∩ imB)/ imD

Our theory defines veils instead quasi-veil. Those are only quasi-veils with an addi-
tional property. We do not need to be explicit about this property in this overview.
But once veils are defined, we term our interactional effects as generative effects.

1.2.3 Roadmap to solution.

To arrive at such a solution, or more generally to the answer to our question, we
need to generalize our sandboxes. We do so by replacing a relation a ≤ b by several
morpshims, or functions, a → b. By doing so, we arrive at the notion of a category.
The interaction operator then generalizes to the notion of colimit, or inductive limit.

When the systems possess a linear (or abelian) property, the key property that
we use is exactness, which is borrowed from commutative algebra. The steps needed
to arrive at an answer can be illustrated through the following correspondences:
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Interaction of systems = Short exact sequences
Quasi-Veil = Functor

Veil = Left-Exact Functor
Interactional Effects = Loss of exactness on the right

Extra information needed = Derived functors (or cohomology objects)
Relating big system to parts = Long exact sequence

We can then form a longer exact sequence relating the phenome of the interconnected
system to that of its subsystems. Characterizations of the sort provided are then
deduced from the exact sequence. Of course, not all systems are abelian. We will
thus need to lift our sandbox to a sandbox that contains abelian systems. For instance,
cardinality of finite sets may be encoded in the dimenions of the vector spaces.

It is nevertheless possible to avoid an explicit generalization. Such a feat might
provide a more accessible presentation, but will come at the expense of keeping the
mathematical intuition mysterious and the results somewhat out-of-the-blue.

1.2.4 A non-contrived solution to the matrix example.

We provide a full non-contrived solution to the posed matrix problem for complete-
ness. This section assumes that the reader has some familiarity with the concepts
herein. Let TA : Rn → Rm, TB : Rn′ → Rm and TC : Rn+n′ → Rm denote the linear
maps associated to the matrices A, B and C, respectively. We define T0 to be the
linear map 0→ Rm. The interconnection of matrices:[

C
]

:=
[
A B

]
consists of taking a pushout (or colimit) along the diagram:

TA ←− T0 −→ TB

The arrows T0 → TA and T0 → TB correspond to the diagrams:

0 Rn 0 Rn′

Rm Rm Rm Rm
T0 TA T0 TB

id id

The pushout then yields a commutative ladder diagram with exact rows:

0 0 Rn ⊕ Rn′ Rn+n′ 0

0 Rm Rm ⊕ Rm Rm 0

T0 (TA,TB) TC

(id,−id) (a,b)7→a+b
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The ladder diagram with exact rows is only an exact sequence of linear maps. We
may apply the Snake lemma to the diagram above, and recover a long exact sequence:

0→ 0→ kerTA⊕kerTB → kerTC → Rm → Rm/ imTA⊕Rm/ imTB → Rm/ imTC → 0

The characterization can then be easily deduced from the exact sequence. The ker
functor is additive and left exact. It admits right derived functors, where only the
first is non-trivial and corresponds to the coker functor. We refer to Chapter 7 or 8
(equivalently, [Ada17f] or [Ada17g]) for the details.

The common part T0 may be modified accordingly to yield different characteri-
zations. Furthermore, different patterns of interconnection can be recreated, and a
similar procedure would apply.

1.3 Listing the Contribution.

As described, the notion of generative effects, explained by the notion of generativity,
captures the intuition of cascading effects and contagion phenomena. We use the
term interactional effects to refer to other potential interaction-related effects that
need not emerge from generativity.

1.3.1 Key contribution.

∗∗∗ Generative effects is loss of exactness.

Specifically, cascading and/or contagion phenomena arise from a loss of exact-
ness. This claim requires technical development and intuition to support it. Once
supported, it entails a rich direction of theoretical pursuit as a corollary.

1.3.2 Supporting contribution.

∗∗∗ We formalize interconnection of systems through joins in semilattices on a
special level, and colimits in categories on a general level. We provide a systems-
theoretic interpretation to such interconnection, by revealing that our approach co-
incides with the abstract structure of the behavioral approach, and revealing connec-
tions to typical models used. Our view allows a clear definition of subsystems and
controlled systems, and enables a sound separation between syntax and semantics,
akin to the separation of behavioral equation representations and behaviors.

∗∗∗ We introduce the notion of generativity, and its byproduct generative effects.
Cascade effects, enclosing contagion phenomena and cascading failures, are seen as
instances of generative effects. Generative effects emerge from a mix of conceal-
ing mechanisms and concealing characteristics in a system. Features are concealed
through the use of a veil, that sets up an adjointness between the space of systems and
the space of phenomes, namely the space of what is visible in the systems. Generative
effects emerge when the functor underlying the veil fails to commute with colimits.
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1.3.3 Corollary contribution.

∗∗∗ We introduce the notion of exact sequences, or more generally exactness in
abelian settings, into the setting of systemic interaction and interactional effects:

• as a means to express interconnection, or interaction, of systems.

• as a means of relating the behavior of a system to its separate components.

The idea of exactness is very prevalent in algebraic mathematical disciplines, notably
algebraic topology and geometry. The idea can further be extended to non-abelian
settings.

∗∗∗ We introduce generative effects as a functorial phenomenon, meaning one that
may only appear when systems are related together, say through morphism. We show
that it translates to a loss of exactness. Specifically, in abelian settings, generative
effects emerge when the veil fails to send surjective maps to surjective maps.

∗∗∗ We introduce homological methods and show how cascade-like phenomena, in
setting of abelian systems, is really cohomological intuition waiting to be formalized:

• We extract universal (cohomology) objects that encode the system’s potential
to generate effects.

• We use the objects to understand and characterize the behavior generated from
the interaction of systems.

• We use the objects to relate the behavior of the interconnected system to that
of its subsystems.

Those objects allow us to understand the role played by the concealed mechanisms
upon the interaction of systems.

Remark. Homological methods in abelian settings are the most direct way to get
such a characterization. There are means to generalize those, for instance through
homotopical methods or non-abelian methods. The thesis will only be concerned with
homological methods, in their simplest direct form.

∗∗∗ We introduce the idea of linearizing generative effects. Cascading phenomena
do not occur from non-linearities. In fact, they are completely orthogonal to them.
We prove that lifting a problem to an abelian setting is always possible. The question
then becomes: can we find a good lift?

1.3.4 Case contribution.

∗∗∗ We reveal insight and connections into the following instances:

• Cascading phenomena through the lens of the behavioral approach.

• Contagion phenomena as depicted by networked models.
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• Reachability problems, cascading failures and paths synchronization.

• Interconnection and the effects of memory.

• Problems in interconnecting matrices.

Each instance will yield different results. As an example, in the case of LTI systems
and memory, we uncover the notion of lag of a system as the primary proponent that
captures the role of memory that is played during interaction.

∗∗∗ We introduce a class of systems that captures the notion of deduction-like
contagion effects. The analysis of that class evolves as an interplay of lattices and
fixed-points. This class provides the archtypical example of generative effects.

∗∗∗ We provide various abelian lifts for various classes of situations.

1.4 Discussion on the contribution.

The contribution of the thesis may be laid on three fronts: a conceptual contribution,
an actionable contribution and a linking contribution.

1.4.1 The conceptual side.

A great deal of effort is currently put by the research community into understanding
the behavior of complex systems. The continual advent of financial crises, power
blackouts, and socio-political turmoil spillovers has made it even more pressing to
understand these cascade-like interactional effects leading to these phenomena. A
great deal of models are proposed in the literature to address those issues, however
we seem to be rather far from a universal understanding of the essence of these
phenomena. For one, most of the intuition floating around is still intangible, and a
good number of essential words are detached from a clear natural meaning.

The conceptual side of the thesis aims to fill that gap. The theory developed serves
as a meta-theory. It lives outside of mathematical models, and may be instantiated
to details as pleased. The theory builds a theory of interconnection, and formalizes
the elusive notion of cascading phenomena through generativity. The theory tells us
that we can measure the potential for cascading phenomena to occur. That potential
is extracted—and thus hereafter termed extract—from the systems, and can be used
to link the behavior of a complicated system to its subsystems despite the presence
of the obstructive interactional effects. The extracts are shown to be universal in a
certain sense, and tend to be much smaller than the systems. They distill the cause
of the emerging behavior.

1.4.2 The actionable side.

The goal when dealing with the interaction of systems is coping with the phenomena
that emerge therein. Such a cope manifests itself on various level. Our ability to
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tame the phenomena, be it through forecasting or control, relies first on our ability
to characterize the emerging behavior through targetted insight rather than naive
brute simulation. On the one hand, it relies on an understanding of how our system
is affected when changes are incurred to it. On the other hand, it relies, inversely, on
understanding what changes can be effected into the system to sustain or induce a
desired behavior.

The work becomes actionable through a good use of the link connecting the be-
havior of the complicated systems to its separate subsystems through the machinery
of exact sequences. We will term this connection, for the rest of this section,
as the linking sequence. Some examples include:

• Forward problems. The theory allows us to deduce the behavior of the in-
terconnected system from the extracts of the subsystems, through the linking
sequence, without need of recomputation. The theory thus enables us to update
the behavior of a system when small local changes are made to it, bypassing
full computations.

Example. Given that we know the image and kernel of a matrix A, updating
the kernel once B is appended to A becomes easy. The alternative consists of
recomputing the kernel from the big matrix.

• Inverse problems. The theory allows us to derive criteria from the linking
sequence that characterizes the subsystems that ought to be added to a system
so as to produce, or preserve, a desired phenomena. Every system whose extract
satisfies the criterion would be a valid candidate.

Example. The characterization automatically gives us a criterion to under-
stand the class of matrices B that yield, when appended, a kernel of a given
dimension. The alternative consists of defining that class by trying out all
possibilities.

• Divide and conquer. A complicated system may be divided into simpler
interacting systems. Each of the simple subsystems are easy to understand, yet
understanding their interconnection is daunting. The linking sequence would
enable to bypass daunting computations.

Example. If C can be split into simpler matrices A and B, the accessible
information on A and B can then be combined to yield the information for the
big matrix.

As the extracts further tend to be smaller than the systems, it provides an even
augmented computational benefit. Intricate use of the linking sequence should further
provide theoretical enhancements when understanding systems and their interaction.

1.4.3 The linking side.

The nature of the theory allows a unification of disparaged instances of the phe-
nomenon. The value of the conceptual and actionable contribution is vindicated by
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the library of models and classes of systems it can account for. The thesis visits
several models and instances, including:

• Cascading phenomena through the lens of the behavioral approach.

• Contagion phenomena as depicted by networked models.

• Reachability problems, cascading failures and paths synchronization.

• Interconnection and the effects of memory.

• Problems in interconnecting matrices.

The linking sequence is directly obtained in the case where the problem has a
linear nature. Most problem will not possess that nature, and thus a solution is
arrived to through appropriate lifts. The thesis provides such lifts, for various classes
of systems, based on group rings, abelian sheaves and abelian complexes.

The theory establishes links to logic, algebraic topology and algebraic geometry
among other areas in mathematics. The aim is to open up a fertile perspective in
understanding interconnected systems and the phenomena that emerge.

1.5 Background and Genesis of the work.

This work began as an endeavor to understand cascade effects. It precisely first
aimed at understanding the mathematical structure underlying models of diffusion
of behavior commonly studied in the social sciences. The setup there consists of
a population of interacting agents. In a societal setting, the agents may refer to
individuals. The interaction of the agents affect their behaviors or opinions. The
goal is to understand the spread of a certain behavior among agents given certain
interaction patterns. Threshold models of behaviors (captured by M.0, M.1, M.2
and M.3 in Chapter 4) have appeared in the work of Granovetter [Gra78], and more
recently in [Mor00]. Such models are key models in the literature, and have been
later considered by computer scientists, see. e.g., [Kle07] for an overview.

Chapter 4 develops a class of systems abstracting away those models. A system in
such a class interpreted as a collection of (monotone) implications: if such and such
event occurs, then such event occurs. From an elementary viewpoint, those systems
consist of a state space, a partially ordered set (P,≤), and some dynamics equipped
over the state space. We show in Chapter 4 that each system may be identified with
a map f : P → P satifying the following three axioms:

A.1 If a ∈ P , then a ≤ f(a).

A.2 If a ≤ b, then f(a) ≤ f(b).

A.3 If a ∈ P , then f(f(a)) = f(a).

Every such map conversely yields a potential system. Such a class of systems encapsu-
lates two features. The first feature embodies the seemingly consequential effects that
emerge from such mathematical models. These systems capture chain of events. The
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second feature enables a theory of interaction and combination. We gain a notion of
subsystem, and a notion of interconnection that coincides with the act of combining
descriptions.

Those maps are often known as closure operators. On one end, they appeared in
the work of Tarski (see e.g., [Tar36] and [Tar56]) to formalize the notion of deduction.
On another end, they appeared in the work of Birkhoff, Ore and Ward (see e.g.,
[Bir36], [Ore43] and [War42], respectively), parts of foundational work in universal
algebra. The first origin reflects the consequential relation in the effects considered.
The second origin reflects the theory of interaction of multiple systems. Closure
operators appear as early as [Moo10].

The ideas of the thesis are salient in this class of systems. First, there had to
be a clear separation between the system itself (the semantics) and a representation
of it (the syntax). Fundamental properties of the systems ought to be representa-
tion independent. Second, interconnection of systems had to be consistent with the
interconnection at the syntactic level. Our systems were described by text (or im-
plicational statements) and not wiring diagrams. Thus input/output composition
is not the solution, and the mathematical structure of interconnection is differemt.
Interconnections instead consists of taking joins in a lattice formed by those maps.
We had gained a notion of subsystem, and a notion of interconnection that coincides
with the act of combining descriptions.

These ideas resonate well with Jan C. Willems’ behavioral approach to systems
theory. Indeed, the theory of interaction later on builds on the intuition provided by
the behavioral approach. Looking closely into the three axioms of the class reveals
A.2, that of order-preserveness, to be the most essential. This axiom A.2 may be re-
placed by Scott-continuity (see e.g., [Sco72] for a definition), and leads us straight into
D. Scott’s work on denotational semantics and domain theory (see e.g., [Sco71], [SS71]
and [Sco72]). From this view point, the emphasis on the separation between syntax
and semantics ought to be greater, and brings us closer to many ideas in logic and
formal methods. The path of considering systems satisfying A.2 (or Scott-continuity)
would lead us to algebras of system akin to those introduced by combinatory logic.
Scott’s domains have also been models for the λ-calculus. This suggests developing
interesting formal languages for the systems in play. The λ-calculus has also been
given semantics through cartesian closed categories. The general pattern of the be-
havioral approach exhibited in Chapter 5 opens ways for links with such languages.
This direction has been set aside for the sake of another. But there many connections
to study in the interplay of syntax and semantics.

There is still however a major problem in understanding cascading phenomena.
We have an algebra of systems that deals with interconnection, but what gives these
systems their potential for cascade effects? What is the mathematical feature that
amounts to the intuition of cascading phenomena? Interconnecting two systems only
yields an interconnected system. Also, the lattice of systems up to this point could
easily be replaced by any another lattice. We thus view them arise when we decide to
forget something from the system. Of course, the structure of the systems should at
least give us something to forget. And thus the mathematical feature may eventually
be found in the structure of the lattice itself.
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As an example, let us consider N. Chomsky’s theory of generative grammar. Ev-
ery grammar builds one language, and different grammars may describe the same
language. But the grammars generating the same language are different. Adding a
clause to one could yield a very different effect than adding it to another. Similar
things happen in deduction, and later on in other problems pertaining cascade effects.
How do those grammars however gain this generativity? Well it is coming from the
grammar rules. But how do we capture it? We capture it by destroying the rules, and
studying how the grammar without the rules (amounting to only the language) be-
haves when combined with other grammars. It is the vivid discrepancy in the outcome
between the presence of the rules and their abscence that encodes the generativity.
Thus to capture cascade effects resulting from the interaction of systems we perform
the following experiment. On one end, we let the systems interact and observe the
outcome. On another end, we destroy the interdependencies lying in the systems
and let them interact without them. These two ends, in the presence of cascading
phenomena, will show a discrepancy in outcome. This discreprancy then encodes the
phenomenon. Studying the discrepancy amounts to studying the phenomenon.

This outlook brings out the following scheme:

〈P,+〉 Φ←−−− 〈S,⊕〉

The space S is the space of systems, and the space P is the space of phenomes,
what we observe from the systems. The map Φ is termed the veil. It conceals (or
forgets) things from a system and keeps only the phenome visible. Thus there are
two ingredients that are required. The first ingredient is a theory of interconnection
or interaction. The second ingredient is theory of higher order effects, obtained by
forgetting things from the systems. The effects would then emerge whenever:

Φ(s⊕ s′) 6= Φ(s) + Φ(s)

The schematic is roughly finalized, but it is still by no means clear what properties
should the mathematical spaces and arrows have. We need those two ingredients
to be synergetic, as they are to live in the basin of a same theory. One natural
approach is to think of an algebra of systems along the lines of universal algebra. The
presence of the operators requires some amount of structure on the spaces, but that
ought not cause a problem. However homomorphisms are designed to be structure
preserving. But interesting phenomena arise when the arrow between the spaces is
not a homomorphism, but one that exactly fails to keep the structure. A different
perspective is then sought.

A closer look in the case of lattices reveals a few things. First, an arrow Φ is
not considered to be a lattice homomorphism, but only an order homomorphism. It
is then the order relation that is essential, and not the join (interaction) operation.
Second, having all systems be subsystems of some universe systems (as in the case of
lattices) seemed restrictive. Replacing order-relations with morphisms and minimums
by universal arrows, left us a trail to consider categories in general. On one end, the
generalized notion of interaction/interconnection though colimits fitted perfectly. On
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another end, the free construction of algebraic objects seemed a prominent example
of something exhibiting cascading phenomena. The notion of adjunction itself seemed
to have captured the essence of what was required. In case of preorders, it restricts
to Galois connections.

At this point, these cascade effects arise from a loss of exactness caused by a right
adjoint functor. If our categories of systems and phenomes were abelian categories,
then the veil is an additive left exact functor. The potential of a veil to destroy
exactness can then be measured. We can then compute cohomology objects from
the systems, giving rise to the derived functors of the veil. As interconnection of
systems can then be made to coincide with exact sequences, we can use those co-
homology objects to recover the lost exactness, due to generativity, through a long
exact sequence.

1.6 Scope and outline.

This body of work has been architected from one growing intuition. It has however
been split into different self-contained pieces, each expounding an aspect of it at a
certain technical level. Each chapter is one piece. The chapters tend to be self-
contained, and the technical mathematical background required varies, intentionally,
from one to the other.

1.6.1 Chapter 2 –
Generativity and interactional effects: an overview.

This chapter provides an overview of the theory. This chapter proposes a means
to relate properties of an interconnected system to its separate component systems
in the presence of cascade-like phenomena. Building on a theory of interconnection
reminiscent of the behavioral approach to system theory, this chapter introduces the
notion of generativity, and its byproduct, generative effects. Cascade effects, enclos-
ing contagion phenomena and cascading failures, are seen as instances of generative
effects. The latter are precisely the instances where properties of interest are not
preserved or behave very badly when systems interact. The goal of the chapter is to
overcome that obstruction. We will show how to extract mathematical objects from
the systems, that encode their generativity: their potential to generate new phenom-
ena upon interaction. Those objects may then be used to link the properties of the
interconnected system to its separate systems. Such a link will be executed through
the use of exact sequences from commutative algebra.

The theory of generativity may be developed on two levels. The first is a special
level where the systems in play tend to be all subsystems of a fixed system serving
as a universe. The second is a general level where such a universe system is not
present. We will only be concerned with the special level in this chapter. It is much
simpler to describe. One however needs the general level to insightfully arrive at a
clear formulation of the problem, and then at a solution. This chapter can then only
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present a sketch of the solution, rather than the general details of it. This chapter
will nevertheless illustrate a working example solution in the special level.

1.6.2 Chapter 3 –
Where do cascades come from?

We argue that the mathematical structure enabling cascade-like effects to intuitively
emerge coincides with certain Galois connections. We introduce the notion of gener-
ative effects to formalize cascade-like phenomena. We define the notion of a veil, and
show that such effects arise from either concealing mechanisms or forgetting charac-
teristic from a system. We study properties of the veil, introduce dynamical veils and
end by discussing factorizations and lifts. The goal is to initiate a mathematical base
that enables us to further study such phenomena. In particular, generative effects will
be linked to a certain loss of exactness. Homological algebra, and related algebraic
methods, then come in to characterize such effects.

1.6.3 Chapter 4 –
Towards an algebra for cascade effects.

We introduce a new class of (dynamical) systems that inherently capture cascading
effects (viewed as consequential effects) and are naturally amenable to combinations.
We develop an axiomatic general theory around those systems, and guide the endeavor
towards an understanding of cascading failure. The theory evolves as an interplay
of lattices and fixed points, and its results may be instantiated to commonly studied
models of cascade effects.

We characterize the systems through their fixed points, and equip them with two
operators. We uncover properties of the operators, and express global systems through
combinations of local systems. We enhance the theory with a notion of failure, and
understand the class of shocks inducing a system to failure. We develop a notion
of µ-rank to capture the energy of a system, and understand the minimal amount
of effort required to fail a system, termed resilience. We deduce a dual notion of
fragility and show that the combination of systems sets a limit on the amount of
fragility inherited.

1.6.4 Chapter 5 –
On the abstract structure of the behavioral approach.

We revisit the behavioral approach to systems theory and make explicit the abstract
pattern that governs it. Our end goal is to use that pattern to understand interaction-
related phenomena that emerge when systems interact. Rather than thinking of
a system as a pair (U,B), we begin by thinking of it as an injective map B →
U. This relative perspective naturally brings about the sought structure, which we
summarize in three points. First, the separation of behavioral equations and behavior
is developed through two spaces, one of syntax and another of semantics, linked by
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an interpretation map. Second, the notion of interconnection and variable sharing is
shown to be a construction of the same nature as that of gluing topological spaces or
taking amalgamated sums of algebraic objects. Third, the notion of interconnection
instantiates to both the syntax space and the semantics space, and the interpretation
map is shown to preserve the interconnection when going from syntax to semantics.
This pattern, in its generality, is made precise by borrowing very basic constructs
from the language of categories and functors.

1.6.5 Chapter 6 –
Interconnection and memory in LTI systems.

We characterize the role played by memory when linear time-invariant systems in-
teract. This study is of interest as the phenomenon that occurs in this setting is
arguably the same phenomenon that governs cascading failure and contagion effects
in interconnected systems. We aim to later extend solutions presented in this chapter
to problems in other desired settings.

The characterization relies on basic methods in homological algebra, and is remi-
niscent of the rank-nullity theorem of linear algebra. Interconnection of systems is first
expressed as an exact sequence, then loss of memory causes a loss of exactness, and
finally exactness is recovered through specific algebraic invariants of the systems that
encode the role of memory. We thus introduce a new invariant, termed lag, of linear
time-invariant systems and characterize the role of memory in terms of the lag. We
discuss properties of the lag, and prove several results regarding the characterization.

1.6.6 Chapter 7 –
Cascading phenomena in the behavioral approach.

This chapter studies the behavior of a subsystem as parts of its greater system un-
dergo changes. As changes can lead, by means of interconnections, to changes in
remote subsystems, the situation is inherently one that exhibits cascade-like effects.
We cast the situation through the lens of the behavioral approach to systems theory,
and recover a characterization relating the behavior of the subsystem to that of its
greater system and the incurred change. We develop a short general theory to address
the posed situation, and instantiate it to five cases: linear finite-dimensional systems,
affine systems, finite systems, linear time-invariant systems and systems defined by
polynomial equations. The theory relies on methods from homological algebra, and
uncovers the zero-dynamics of a system as essential to relate the behavior of a subsys-
tem to its greater system. The general pattern exhibited by the theory is of separate
interest to understand interaction-related phenomena that generally occur in the in-
teraction of systems.
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1.6.7 Chapter 8 –
Generativity and interactional effects: general theory.

This chapter develops the theory at the general functorial level. The chapter exposes
the emergence of interaction-related phenomena as a loss of exactness. It introduces
the notion of generativity, and its by-product generative effects. These occur precisely
when properties or features of a system behave badly under interconnection. The
chapter outlines, develops and exemplifies homological methods to deal with such
phenomena. The goal is to relate the behavior of the interconnected system to that
of its separate components despite the presence of such phenomena.

1.6.8 Chapter 9 –
How to make cascade effects linear.

It can be a common (mis)conception that cascading phenomena arise from non-
linearities. The key message expressed throughout the thesis is that they do not.
The mathematical structure underlying cascades is loss of exactness. As such it is
then conceivable to lift our problematic situation to a world that is linear, keeping
the effects intact. In such linear (or abelian) settings, tools from commutative algebra
and homological algebra can be put to good use in understanding the phenomena, no-
tably through defining (co)homology theories. We introduce the notion of an (abelian)
veil-lift to encode the phenomenon (somewhat) intact in an abelian structure. We
develops tools and tricks to abelianize cascading phenomena, and finally show that
every situation admits an abelian veil-lift. The neverending goal is then to find tight
lifts.

1.6.9 Chapter 10 –
Conclusion.

We conclude the thesis with some remarks and future directions.
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Chapter 2

Generativity and interactional
effects: an overview

Abstract

This chapter proposes a means to relate properties of an interconnected system to
its separate component systems in the presence of cascade-like phenomena. Building
on a theory of interconnection reminiscent of the behavioral approach to system the-
ory, this chapter introduces the notion of generativity, and its byproduct, generative
effects. Cascade effects, enclosing contagion phenomena and cascading failures, are
seen as instances of generative effects. The latter are precisely the instances where
properties of interest are not preserved or behave very badly when systems interact.
The goal of the chapter is to overcome that obstruction. We will show how to extract
mathematical objects from the systems, that encode their generativity: their poten-
tial to generate new phenomena upon interaction. Those objects may then be used
to link the properties of the interconnected system to its separate systems. Such a
link will be executed through the use of exact sequences from commutative algebra.
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2.1 Introduction.

Whenever we deal with the realm of interconnection of systems and interaction-related
effects—termed, interactional effects—we may be driven by a natural impulse to de-
sire properties of systems, explaining such effects, that are compositional. By compo-
sitional properties, we mean properties that are preserved or behave very well when
the systems are interconnected. Interactional effects of heavy interest, such as con-
tagion effects and cascading failures, arise however exactly because compositionality
fails in various aspects. These phenomena are given away by systemic properties
that fundamentally do not behave well under interconnection. We may then fairly
expect, when aiming to understand such interactional effects, any non-trivial tangible
compositional property to be fundamentally too weak to yield us something of use.
But if we back away from the idea of wanting our properties to be compositional, can
we recover such compositionality through other means? This chapter proposes such
a means to relate properties of an interconnected system to its separate component
systems in the presence of cascade-like phenomena. Properties that are preserved or
behave well under interconnection are seen to be related through a special case of
that means.

This chapter introduces the notion of generativity, and its byproduct, generative
effects. Cascade effects, enclosing contagion phenomena and cascading failures, are
seen as instances of generative effects. The converse does not have to be true unless
one decides to expand the intuition that floats about cascading phenomena. The key
to understanding these effects is that they are not intrinsic to the system. They rather
result from an extrinsic dichotomy, a separation between what is deemed observable in
the system—termed, the phenome—and what is concealed in the system. Generative
effects emerge from an interplay between the phenome and the concealed mechanisms.
This dichotomy is enforced by a map—termed, the veil—from a space of systems to
a space of phenomes. The veil partially covers the system leaving the phenome bare,
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thereby concealing mechanisms in a system. Generative effects are sustained by the
veil whenever the phenome of the interconnected system cannot be explained by the
phenome of the separate parts. The mechanisms of the systems concealed under the
veil interact so as to produce new observables.

Generative effects are thus precisely the instances where the property of interest,
the phenome, evolves horrendously under interconnection. The goal of the chapter
is to overcome that obstruction. We will show how to extract mathematical objects
from the systems, that encode their generativity: their potential to generate new ob-
servables. Those objects may then be used to link the phenome of the interconnected
system to its separate systems. Such a link will be executed through the use of ex-
act sequences from commutative algebra. The horizon goal of such a development is
twofold. We firstly aim to acquire a computational means to evaluate the behavior
of systems under the presence of cascading-like phenomena. We secondly aim to gain
insight into how systems interact and behave among each others. Such insight is to
be be used first for the (theoretical) analysis of interactive systems, and second for
the design of systems that can desirably cope with change.

The theory of generativity may be developed on two levels. The first is a special
level where the systems in play tend to be all subsystems of a fixed system serving
as a universe. The second is a general level where such a universe system is not
present. We will only be concerned with the special level in this chapter. It is much
simpler to describe. One however needs the general level to insightfully arrive at a
clear formulation of the problem, and then at a solution. This chapter can then only
present a sketch of the solution, rather than the general details of it. This chapter
will nevertheless illustrate a working example solution in the special level.

This chapter begins by a theory of interconnection reminiscent of the behavioral
approach to system theory, initiated by J. C. Willems. It proceeds to define generative
effects, and elaborates examples to develop the intuition of the reader. In a linear
world, generative effects will be associated to a loss of surjectivity. We thus show
how to recover such a loss, and link the phenome of the interconnected system to
the separate component systems. As not all worlds are linear, we arrive at a general
solution by lifting our problems to linear problems.

On the technical end, interconnection of systems, in a linear world, will be syn-
onymous to short exact sequences. Generative effects are sustained by a veil if, and
only if, exactness is lost once the veil is applied to the systems. The goal is then
to recover this loss of exactness. We can extract algebraic objects from the systems,
that encode their generativity, and mend the nonexact sequence into a long exact one
by fitting in the objects appropriately.

2.2 Interconnection and interaction of systems.

We cannot have interactional effects without a notion of interaction or interconnec-
tion. The notion of interconnection in the special theory is rather simple, yet inclusive.
The systems are elements of a set S, and interaction is an operation ∨ : S × S → S
that is:
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I.1. Associative i.e., (s ∨ s′) ∨ s′′ = s ∨ (s′ ∨ s′′)
I.2. Commutative i.e., s ∨ s′ = s′ ∨ s
I.3. Idempotent i.e., s ∨ s = s

A semilattice (S,∨) is a set S equipped with an operation ∨ that is associative,
commutative and idempotent. The operation ∨ is termed the join of the semilattice.

Definition 2.2.1. A system is an element of a semilattice (S,∨). The systems s and
s′ in S are interconnected to give the system s ∨ s′, their join, in S.

A system s is defined to be a subsystem of s′ whenever s ∨ s′ = s′. The system
s = s1∨· · ·∨sm is then the system that amounts from the interaction, or combination,
of the subsystems s1, · · · , sm. There is only a unique way to interconnect two systems,
and it is via the ∨ operation.

A semilattice (S,∨) induces a partial order ≤ on S obtained by setting s ≤ s′ if,
and only if, s ∨ s′ = s′. Thus s is a subsystem of s′ if, and only if, s ≤ s′. The join
s ∨ s′ is then the least upper bound of s and s′. It is the smallest system t such that
s ≤ t and s′ ≤ t.

We provide two generic concrete interpretations, and leave other interpretations
to examples in future sections.

2.2.1 The behavioral approach to system theory.

The behavioral approach to system theory, initiated by J. C. Willems, begins with
the premise that a mathematical model acts as an exclusion law (see e.g., [PW98] and
[Wil07]). The phenomenon we wish to model produces events or outcomes that live
in a given set U, termed the universum. The laws of the model (viewed descriptively)
state that some outcomes in U are possible, while others are not. The model then
restricts the outcomes in U to only those are allowed possible by the laws of the
model. The set of possible outcomes is then called the behavior of a model. We will
refrain from using the term model, and replace it by the term system.

Definition 2.2.2 (cf. [PW98] Section 1.2.1). A Willems system is a pair (U,B) with
U a set, called the universum—its elements are called outcomes—and B a subset of
U called the behavior.

In case we fix a universum U, the set of Willems systems (U,B) partially ordered
as (U,B) ≤ (U,B′) if, and only if, B ⊇ B′ forms a semilattice (S,∨). Interconnection
of systems is given by the set-intersection of the behaviors, and corresponds to the
join of the defined semilattice.

Proposition 2.2.3. If (U,B) and (U,B′) are Willems systems, then their intercon-
nection (U,B ∩ B′) is given by (U,B) ∨ (U,B′).

The properties of the semilattice will depend on what we allow as possible behav-
iors. If we consider all subsets to be possible behaviors, our semilattice (S,∨) will
form a Boolean lattice. If U is a vector space, and we consider the linear subspaces
of U to be the possible behaviors, then we tend to get a semilattice that is only a
modular lattice.
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2.2.2 Syntactical systems and descriptions.

Another approach consists of thinking of an element of the semilattice (D,∨) as a
description of a system. Descriptions are combined through the join operation of the
semilattice. The description may be in the form of a text, an equation, a diagram
or any syntactical piece one might wish for. Inasmuch as the solution set of a set of
algebraic equations does not depend on their order, we have d∨d′ = d′∨d. Inasmuch
as redundant algebraic equations produce no effects on the solution set, we have
d ∨ d = d. As combining descriptions also tends to be associative, we arrive at the
defining axioms of the semilattice.

As a simplified formalization. Let Σ be a finite set, termed the alphabet. We
define Σ∗ to be the set of finite strings, words, or sequences, made up of elements
of Σ. If Σ = {a, b}, then Σ∗ = {∅, a, b, aa, ab, ba, bb, aaa, aab, · · · }. A description,
termed language, is a subset of Σ∗. As not all languages may provide meaningful
descriptions for our systems, we may a pick a subset L of them. We order L by
inclusion, and get a partial order. We will assume that every pair of languages in L
admits a least upper-bound. We would have then obtained a semilattice (L,∨). If d
and d′ are descriptions of systems in L, then d ∨ d′ denotes the smallest language in
L that contains both d and d′.

If d and d′ are descriptions for the same system, then we expect d ∨ d′ to be a
redundant description of the same system. Let us assume that L is finite. If a system
admits multiple descriptions of it in L, we may take the join of all those descriptions
to arrive at the maximum language in L that describes the system. The collection
of such maximal languages forms a subsemilattice (S,∨) of L. The semilattice S will
then be our semilattice of systems. In case every system admits a unique description
in L, the semilattice of systems S is just L.

2.3 Generativity and Interactional Effects.

A theory of interconnection by itself will not be enough to produce interactional
effects. Interconnecting two systems only gives an interconnected system. We thus
view interactional effects as fundamentally not intrinsic to the system. They will only
emerge once we set our expectation for what is deemed observable in a system.

Let System be a semilattice of systems. We define the phenome as that which we
choose to explicitly observe from an arbitrary system in that class. A phenome may
be either a property, a feature, a consequence, or even a subsystem of the system. We
generally, often non-trivially, arrive at a phenome by forgetting irrelevant information
from the system. We may lightly define a phenome as the image of a system under a
map φ : System → P of sets. We may choose to forget nothing at all, and get the
identical whole system as a phenome. The set P would then be System, and φ would
be the identity map. We may also choose to forget everything, and get nothing as a
phenome of a system. The set P would then be a singleton set {∗}, and φ would be
the unique map System→ {∗}. Thus varying what and how much we forget from a
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generic system of System gives us different phenomes for the same system.
We are interested in understanding how the phenome of a certain system changes

when the system is modified. More generally, we want to understand how the phenome
of systems changes when systems interact. We are particularly interested in the
situations where the phenome of the interconnected system cannot be explained by
the phenome of the separate systems. Once a phenome is declared, everything we
intentionally forget from the system is declared to be concealed. Although concealed
features of a system may not emerge by themselves into the phenome, they are likely
to interact with phenomes or concealed mechanisms from other systems to affect
the observable phenome. Such situations are characteristic of the contagion behavior
observed in societal settings and of cascading failure in various infrastructural systems.
The parts of the systems that are declared concealed may interact so as to produce
more than what is expected from what is observable. We term the effects leading to
such unexplained phenomena as generative effects. The concealed part of the system
is irrelevant to the system’s phenome, but it has the potential to interact with either
the phenome or concealed parts of other systems. We term that potential generativity.

2.3.1 Veils and generativity.

We arrive at a phenome by forgetting things from a system, by concealing them
under a veil. We may then well think of a phenome as a simplified system. The set
of phenomes then forms a semilattice (P,∨). The join ∨ naturally induces a partial
order ≤ on P .

Definition 2.3.1 (Veil). A veil on System is a pair (P, φ) where (P,∨) is a semi-
lattice of phenomes, and φ : System→ P is a map such that:

V.1. The map φ is order-preserving, i.e., if s ≤ s′, then φs ≤ φs′.

V.2. Every phenome admits a simplest system that explains it, i.e., the set {s : p ≤
φs} has a (unique) minimum element for every phenome p.

The veil is intended to hide away parts of the system, and leave other parts,
the phenome, of the system bare and observable. The axiom V.1 indicates that
concealing a subsystem of a system may only yield a subphenome of the phoneme of
the system. The axiom V.2 indicates that everything one observes can be completed
in a simplest way to something that extends under the veil. Generative effects occur
precisely when one fails to explain the happenings through the observable part of the
system. In those settings, the things concealed under the veil would have interacted
and produced observable phenomes.

Definition 2.3.2 (Generative Effects). A veil (P, φ) is said to sustain generative
effects if φ(s ∨ s′) 6= φ(s) ∨ φ(s′) for some s and s′.

Different veils may be chosen for the same semilattice of systems. Some will
sustain generative effects and some will not. For instance, both veils (System, id)
and ({∗}, ∗ : System→ {∗}) do not sustain generative effects at all. All that can be
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observed is explained by what is already observed. Thus the standard intuition for
systems exhibiting cascading phenomena, or contagion effects, does not stem from a
property of a system. It is rather the case that the situation admits a highly suggestive
phenome and highly suggestive veil that sustains such effects. Those effects are thus
properties of the situation. Should we change the veil, we may either increase those
effects, diminish them or even make them completely go away. Such interactional
effects depend only on what we wish to observe.

Our aim is then to answer the following question:

Question 2.3.3. Given a veil (P, φ) that sustains generative effects, how can we non-
trivially characterize or express Φ(s ∨ s′) through separate information on s and s′

(and potentially a common system s ∧ s′)?

How can we relate the behavior of the interconnected system to its separate com-
ponents?

2.4 Some examples.

The aim of this section is to develop the reader’s intuition on veils and generative
effects. We provide five examples.

2.4.1 Generativity is not intrinsic to the system.

This example deals with a very simple—if not the simplest—instance of generative
effects. Let U be a finite set. Two proper subsets of U are not equal to U by definition.
Their union can however be equal to U . If we set up a veil that keeps only whether
a given subset of U is equal to U or not, the veil will then sustain generative effects.
Formally, let {∗} be a one point set. The semilattice System of systems is (2U ,∪).
The veil is (2{∗}, φ) where φS = ∅ if S ( U and φS = {∗} if S = U . Although two
subsets are not separately equal to U , their union can be U . If Sc is the complement
set of S ( U , then:

φ(S ∪ Sc) 6= φS ∪ φSc

This toy instance may be complicated by replacing 2U by any semilattice L. Let
s, s′ ∈ L be non-comparable elements, and define φ to map an element t to {∗}
if t ≥ s ∨ s′, and to ∅ otherwise. Such a defined veil trivially sustains generative
effects for any semilattice of systems with two non-comparable elements. It is then
ill-posed to talk about a system exhibiting generative effects. It is a property of the
perspective, i.e. the veil, we choose.

2.4.2 Generativity in the behavioral approach.

Let us consider a mega-system comprised of an interacting mixture of infrastructures
(e.g., power, transportation, communication), markets (e.g., prices, firms, consumers),
political entities and many individuals. We are interested in understanding the evolu-
tion of the behavior of a subsystem of this mega-system, as changes are effected into
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the mega-system. Of courses changes directly effected onto the subsystem modifies
the behavior. It is also the case that seemingly non-related changes causes a shift in
the behavior by a successive chain of events.

Let M, S and R be sets such that M = S×R. Following the behavioral approach
terminology we will have M, S and R be the outcome space, or universum, of the
mega-system, the subsystem, and the rest (or remainder) in the mega-system that
is not the subsystem of interest. The systems will then be subsets of those universa.
Specifically, the sets M ⊆ M, S ⊆ S and R ⊆ R denote the behavior of the mega-
system, the subsystem and the rest, respectively. Although S is a subsystem of M,
the set S is not a subset of M, but is rather a projection (or a quotient) of M onto
the S-coordinate. A change in our mega-system, following the behavioral approach,
is then depicted as an intersection with a change C ⊂M. If we denote by π : M→ S
the projection onto the S-coordinate, then πM = S and we generally observe:

π(M∩ C) 6= π(M) ∩ π(C).

The change C affects the subsystem S through interactions within R. If all the
interactions were confined to be within R, then we would have had equality for sure.
In such a case, changes outside of S do not affect S.

Mathematically.

The systems lattice is (2M,∩), and the lattice of phenomes is then (2S,∩). The veil
π is then the projection of M⊆M onto the S-coordinate, i.e.,

πM = {s ∈ S : (s, r) ∈M}.

The map π preserves the partial order, and every phenome S ⊆ S admits S ×R as a
simplest system explaining it in 2M. The veil π also sustains generative effects. As a
simple instance, consider S = {s, s} and R = {r, r}. Let our mega-system be M =
{(s, r), (s, r)}, where all feasible outcomes have matched type-faces. Our system S is
then πM = {s, s}. We will now effect the following change C = {(s, r), (s, r)}, where
only bold-faced r is allowed. We then observe an inequality. The set π(M∩C) = {s}
is different than the set π(M) ∩ π(C) = {s, s}. The change propagated through R
into the behavior of S.

Generally.

The universa M, S and R may be equipped with various mathematical structures,
e.g., linear structures making them vector space. The behaviors become subspaces of
their corresponding universum. This example may then be enriched as needed.

2.4.3 Deduction and consequences.

As a simplified case of this example, we will have each system consist of a three node
graph. Each node in the graph can be colored either black or white, and is assigned
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an integer k as a threshold. All nodes are white initially. A node then becomes black,
if at least k of its neighbors are black. Once a node is black it remains black forever.
In this setting, the order of update does not affect the final set of black. For instance,
let A and B denote the systems on the left and right, respectively.

2

3

1 0

2

2

Given our rule above, a threshold of 0 indicates that a node automatically becomes
black. If no threshold of 0 exists, then necessarily all nodes will remain white. Two
systems interact by combining their evolution rules. The system A ∨ B corresponds
to the graph that keeps on each node the minimum threshold between that of A and
B:

0

2

1

We can forget the evolution rules that are prone to interact with others by keeping
from the systems only the set of final black nodes. Indeed, every set of black nodes
S corresponds to a simplified system having a threshold of 0 on the nodes in S and
a threshold of ∞ on the nodes not in S. Let us denote by φ(A) and φ(B) the set of
black nodes of A and B respectively. Then the set φ(A) is empty, and the set φ(B)
contains the left node. The combination of the phenomes φ(A) and φ(B) corresponds
to the union φ(A)∪φ(B). Such a combination may be equivalently thought of as the
final set of black nodes corresponding to φ(A) and φ(B) when viewed as simplified
systems. We then arrive at the inequality:

φ(A ∨B) 6= φ(A) ∪ φ(B)

When A and B are combined, the left black node in B interacts with the rules of A
to color the right node black. Both the left and the right nodes then interact with
the rules of B to color the middle node black. This effect is encoded in the inequality.

Generally.

The above case may be trivially generalized to arbitrary graphs and thresholds. The
essence of it however lies in the following idea. Informally, let E1, · · · , En be state-
ments. A statement may be thought of as expression that may either be proven or
unproven to be true. It is helpful to think of statements as theorems. The statements
however may be related. If some are proved to be true, they may constitute a proof
for other statements to be true. The systems will then consist of a set of premises
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and implications. The premises may be thought of as axioms, and the implications
may be thought of as inference rules. Some statements are initially assumed true,
and the implications allow us to prove more statements to be true than initially held.
Two systems are combined by combining their premises and the implication rules. It
is intuitively clear that the interaction of implications from the systems would allows
a far more powerful deduction than what is possible without interaction.

Mathematically.

The systems and their properties are treated in [Ada17c]. Let S be a set. The systems
can be identified with maps f : 2S → 2S satisfying:

A.1 For all A ⊆ S, we have A ⊆ fA.

A.2 If A ⊆ B, then fA ⊆ fB.

A.3 For all A ⊆ S, we have ffA = fA.

We can order the maps by f ≤ g if, and only if, fA ≤ gA for all A ⊆ S. We then
obtain a semilattice L. If we define φ : L → 2S to map f to its least fixed-point f(∅),
then (2S, φ) defines a veil. This veil can be shown to sustain generative effects.

The lattice 2S may also be replace by any other lattice. Of course, one may also
consider subsemilattices of L for additional variations.

2.4.4 Reachability problems.

This example may viewed through the lens of reachability problems. A system loosely
consists of a collection of states along with internal evolution dynamics. The dynamics
of system dictate whether the system may evolve from state a to state b. Two systems
may be combined by allowing their dynamics to interact. The interaction of dynamics
would then allow the system to reach more states than what is separately reachable.

As a simplified case of this example, we will have each system consist of a digraph
over four nodes. For instance, let S and S ′ denote the systems on the left and right,
respectively.

1

2

4

3

1

2

4

3

Two systems S and S ′ interact by combining their edges, to yield S ∪ S ′.
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3
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The phenome of the system corresponds to the set of pairs a→ b where b can be
reached from a through a directed path. We can ignore the cases a→ a as they belong
to the phenome of every possible system. Then phenome φ(S) of S corresponds to
{1→ 2, 3→ 4}, while the phenome φ(S ′) of S ′ corresponds to {2→ 3, 4→ 1}. The
phenomes φ(S) and φ(S ′) are combined via set union to yield φ(S)∪ φ(S ′). One can
then see that:

φ(S ∪ S ′) 6= φ(S) ∪ φ(S ′)

Generative effects are sustained. Indeed φ(S) ∪ φ(S ′) contains only four elements,
whereas φ(S ∪ S ′) contains all possible pairs. The edges in the combined graph are
aligned to create paths that did not exist separately.

Generally + Mathematically.

Let S be a set. Denote by Rel(S) and Tran(S) the set of relations on S and transitive
relations on S, respectively. The set Rel(S) froms a semilattice by defining the join
to be union of sets, and Tran(S) forms a semilattice by defining the join ot be the
union of sets followed by the transitive closure. The systems lattice is then Tran(S),
the phenomes lattice is Rel(S) and our veil will be defined to forget the transitive
property. The map φ of the veil will be the order-preserving inclusion from Tran(S)
to Rel(S). The defined veil sustains generative effects.

Important remark.

The semilattice of phenomes does not have to be smaller than the semilattice of
systems. The veil can be devised to forget properties, and thus the phenome consists
of systems that do not necessarily have the forgotten property. The space of phenomes
then trivially contains the systems that do have the forgotten property. Throwing
away information from the system, leaves us with a system with less information. But
if that information was restrictive, then the space of phenomes will be greater than
that of the systems.

2.4.5 Words, languages and grammars.

Let Σ = {a, b} be an alphabet set. A word over Σ is a string consisting of a finite
sequence of letters in Σ, e.g., abba, a, abaab, etc. A system will consist of a collection
of transformation rules u↔ v where u and v are words. Starting from a given word w,
a system that possesses rule u↔ v may substitute any appearance of u as a subword
in w by a subword v, and vice versa. Two systems are combined by taking the union
of the rules. Fixing an initial word w, the phenome we are interested in is the set
of words that a system may transform it to. Indeed, the scope may be much greater
when systems are combined than what can be separately achieved. Generative effects
will be sustained.

As a concrete instance, let the system S be the rules aa↔ a and bb↔ b, and the
system S ′ be the rules ab↔ ba. Let us pick (and fix) w to be ab. The phenome φ(S)
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is then the set of words having all as on the left and all bs on the right. The phenome
φ(S ′) is only the set {ab, ba}.

As two systems interact by putting their relations in common, the system S ∨ S ′
is the rules aa ↔ a, bb ↔ b and ab ↔ ba. The combination of phenomes is the set
union φ(S) ∪ φ(S ′). Generative effects are sustained as:

φ(S ∨ S ′) 6= φ(S) ∪ φ(S ′).

Indeed, the phenome S ∨ S ′ contains all strings containing at least one a and one b.

Mathematically.

This example falls within the world of languages and grammars. We will unfortunately
neglect the algebraic structure of the problem, for the purposes of this example. Let
Σ∗ be the set of all words, and let w be a fixed word. Every system corresponds
to an equivalence relation on Σ∗. The phenome corresponds to the equivalence class
containing the word w. Combination of systems corresponds to closing the union
relation under transitivity, and combination of phenomes is set union. Both the
systems and the phenomes form semilattices. The veil that reads the equivalence
class of w can be shown to sustain generative effects.

2.5 The problem and the goal.

Our aim is to understand the evolution of the phenome as systems interact. The
inequality in generative effects hinders such an understanding. Since we are precisely
interested in such effects, we are bound to live with that inequality. The question
then becomes as to how we go around it. We are interested in the phenome of the
interconnected system. We may obviously, if tractable, combine the systems and read
the phenome. Such an approach, however, will yield no insight at all into the problem.

The inequality of generative effects tells us that some features of the combined
phenome cannot be explained by the separate ones. Thus we still need to extract
additional information from the system. We will then extract a mathematical object
that encodes the generativity of a system: the potential of a system to produce
changes in the phenome. We can then use these objects to relate the phenome of
the combined system to that of the separate subsystems. Thus, those object will
summarize the required information needed to go around the inequality. But most
importantly, in most cases, the system cannot be reconstructed from the objects and
the phenomes. We are then distilling what it is that makes systems produce those
effects. In the general theory, these objects may be seen as universal in a certain
sense. The development in this chapter will however be oblivious to any property
those objects ought to possess.

The key to the solution is that the inequality in generative effects means that
some features of the combined system’s phenome cannot be explained by the separate
subsystems’ phenome.
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2.5.1 Destroying surjectivity.

A veil (P, φ) is said to sustain generative effects if φ(s ∨ s′) 6= φ(s) ∨ φ(s′) for some s
and s′. The phenome of the separate systems is, thus, unable to explain the phenome
of the interconnected system. This inability will be formally understood as a loss of
surjectivity of a certain map. The loss of surjectivity will be key to the solution.

Let us suppose that both the systems and the phenomes are sets. More precisely,
we will have System = (2U ,∪) and P = (2V ,∪). If S and S ′ are subsets of U , then
there are canonical injective maps i : S → S ∪ S ′ and i′ : S ′ → S ∪ S ′. Let S q S ′
denote the disjoint union of S and S ′, and define i q i′ : S q S ′ → S ∪ S ′ to be the
map i on S and i′ and S ′.

Proposition 2.5.1. For every every S and S ′, the map iq i′ is a surjective map.

Proof. An element of S ∪ S ′ belongs to either S, S ′ or both.

On another end, as φS ⊂ φ(S∪S ′) and φS ′ ⊂ φ(S∪S ′), we get canonical injective
maps φi : φS → φ(S ∪ S ′), and φi′ : φS ′ → φ(S ∪ S ′). The map φi q φi′ need not
always be surjective.

Proposition 2.5.2. The veil φ sustain generative effects if, and only if, the map
φiq φi′ : φS q φS ′ → φ(S ∪ S ′) is not surjective for some S and S ′.

Proof. Generative effects are not sustained if, and only if, φ(S ∪ S ′) = φ(S) ∪ φ(S ′)
for all S and S ′. If φ(S ∪ S ′) = φ(S) ∪ φ(S ′), then φi q φi′ : φS q φS ′ → φ(S ∪ S ′)
is surjective by Proposition 2.5.1. Conversely, if φiq φi′ is not surjective, then some
element in φ(S ∪ S ′) does not admit a preimage in φS q φS ′. Therefore, φ(S ∪ S ′)
strictly contains φ(S) ∪ φ(S ′), and generative effects are sustained.

Generative effects then occur when there are points in φ(S∪S ′) that do not admit
preimages in either φS or φS ′.

2.6 The problem, in a world that is linear.

We may push the findings further if we equip our setting with more structure. We will
have both the systems and the phenomes be vector spaces. If V is a vector spaces,
we define Sub(V ) to be the lattice of the subspaces of V . The join of A and B in
Sub(V ) is A + B, the linear span of A and B. Let V and W be vector spaces, we
consider a veil φ : Sub(V )→ Sub(W ).

As a concrete example, one may consider φ : Sub(Rn) → Sub(Rn−1) obtained
by intersecting a subspace of Rn by a fixed hyperplane H. One may check that
(Sub(Rn−1), φ) is a veil for Sub(Rn) that sustains generative effects for every hyper-
plane.

If S and S ′ are subspaces of V , we then have two injective linear maps i : S →
S + S ′ and i′ : S ′ → S + S ′. We can then form a linear map i− i′ : S ⊕ S ′ → S + S ′.

Proposition 2.6.1. For every S and S ′, the map i− i′ is a surjective map.
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Proof. Every element of S + S ′ can be written in the form a− (−a′) with a ∈ S and
−a′ ∈ S ′.

On another end, as φS ⊂ φ(S + S ′), and φS ′ ⊂ φ(S + S ′) we get linear maps
φi : φS → φ(S + S ′), and φi′ : φS ′ → φ(S + S ′). The map φi − φi′ need not always
be surjective.

Proposition 2.6.2. The veil φ sustain generative effects if, and only if, the map
φi− φi′ : φS ⊕ φS ′ → φ(S + S ′) is not surjective for some S and S ′.

Proof. The same reasoning as that in the proof of Proposition 2.5.2 applies, with ∪
replaced by +.

If φi−φi′ is not surjective, then there are elements in φ(S+S ′) that do not admit
a preimage in either φS or φS ′. Those points cannot be explained by φS and φS ′.

In the linear case, we win an extra characterization of what cannot be explained
by the phenome. If I denote the image of φi−φi′, then φ(S +S ′) = I ⊕φ(S +S ′)/I.
What can be explained by the phenome lies in I. What cannot be explained by the
phenome, and is caused by generative effects, lies in φ(S + S ′)/I. Our goal is to
characterize and recover φ(S + S ′)/I.

2.6.1 Interlude on exact sequences.

If we live in a linear world, the relationship among the phenomes of the intercon-
nected system and its separate subsystems will be established through the use of
exact sequences.

A sequence of R-vector spaces Vi and linear maps fi

· · · −−−→ Vi−1
fi−−−→ Vi

fi+1−−−→ Vi+1 −−−→ · · ·

is said to be exact at Vi if im fi = ker fi+1. The sequence is said to be exact if it is
exact at every Vi. In particular, the sequence:

0 −−−→ U
f−−−→ V

is exact if, and only if, the map f is injective. Dually, the sequence:

V
g−−−→ W −−−→ 0

is exact if, and only if, the map f is surjective. As we shall see, if the phenomes φ(S),
φ(S ′) and φ(S + S ′) were made to be part of an exact sequences, we can then relate
them together. For example, if the sequence:

U
f−−−→ V

g−−−→ W

is exact, then V is isomorphic to im f ⊕ ker g. If the sequence is longer, the charac-
terization may reach elements further apart.
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2.6.2 Loss of exactness, on the right.

Let V and W be vector spaces. We again consider System to be Sub(V ) and set up a
veil (Sub(W ), φ). For S and S ′ subspaces in V , let j : S → S+S ′ and j′ : S ′ → S+S ′

be the canonical injections. The sequence:

S ⊕ S ′ j−j′−−−→ S + S ′ −−−→ 0

is always exact. Generative effects occur precisely when:

φS ⊕ φS ′ φj−φj′−−−−→ φ(S + S ′) −−−→ 0

is not exact. There is then a non-zero vector space U corresponding to coker(φj−φj′)
and a surjective map φ(S + S ′)→ U such that the sequence:

φS ⊕ φS ′ φj−φj′−−−−→ φ(S + S ′) −−−→ U −−−→ 0

is exact. The vector space U corresponds to the unexplained phenomes, and is iso-
morphic to coker(φj − φj′). We, of course, do not know the map φj − φj′ as we do
not know the phenome φ(S +S ′). The goal is then to recover U from information on
the systems S and S ′. As an exemplary approach, we may perform such a recovery
via the Snake lemma.

Proposition 2.6.3 (Snake Lemma, e.g., [AM69] ch. 2, p. 23, proposition 2.10).
Given a commutative diagram of vector spaces with exact rows,

0 −−−→ U
f−−−→ V

g−−−→ W −−−→ 0yu yv yw
0 −−−→ U

f ′−−−→ V ′
g′−−−→ W ′ −−−→ 0

we get an exact sequence:

0 −→ keru
f̃−→ ker v

g̃−→ kerw
δ−→ cokeru

f̄ ′−→ coker v
ḡ′−→ cokerw −→ 0.

Proof. The lemma is standard, and its proof may be found in many texts, e.g., [AM69]
ch. 2, p. 22.

The exact sequence derived form the Snake lemma allows us to link the kernel
and cokernel of w to those of u and v.

Proposition 2.6.4. If the sequence of vector spaces:

0 −→ V0
f−→ V1 −→ V2 −→ V3

g−→ V4 −→ V5 −→ 0,

is exact, then V2 = coker f ⊕ ker g and V5 = coker g.

Proof. The following sequence is exact:

0→ im(V1 → V2)→ V2 → im(V2 → V3)→ 0
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We have im(V1 → V2) = V1/ ker(V1 → V2). As ker(V1 → V2) = im f by exactness of
the six-term sequence, we get that im(V1 → V2) = coker(f). By exactness, we also get
im(V2 → V3) = ker g. Finally, short exact sequence of vectors spaces split. Namely,
if 0→ U → V → W → 0 is a sequence of vector spaces, then V = U ⊕W .

The strategy to recover the phenome coming from generative effects would be to
lift the sequence S⊕S ′ → S+S ′ → 0 to be part of the diagram described in the Snake
lemma. If we can think of our systems as linear maps, and encode the phenome as a
kernel of those maps, then we may recover the map φS⊕φS ′ → φ(S+S ′) as part of the
kernel-cokernel exact sequence. Furthermore, three columns are in play in the Snake
lemma. The middle would correspond to the separate systems. The rightmost column
would correspond to the interconnected system. The leftmost will be made to cor-
respond to the common part of the two systems on which they will be interconnected.

As a general insight, let V and V ′ be subspaces of some vector space, and consider
the following commutative diagram:

V ∩ V ′ i−−−→ Vyi′ yj
V ′

j′−−−→ V + V ′

Proposition 2.6.5. The sequence

0 −−−→ V ∩ V ′ (i,i′)−−−→ V ⊕ V ′ j−j′−−−→ V + V ′ −−−→ 0

is exact.

Proof. The map (i, i′) is injective and j− j′ is surjective. The map j− j′ maps every
element (v, v) to 0. Conversely, if j(v) − j′(v′) = 0, then j(v) = j′(v′). As j and j′

are injective, we get v = v′ and thus v ∈ V ∩ V ′.

Interconnection of systems can then be thought of as a short exact sequence.
Generative effects is then equivalent to a loss of exactness, but only on the right.

Proposition 2.6.6. The veil φ sustains generative effects, if and only if, the sequence

0 −−−→ φ(S ∩ S ′) (φi,φi′)−−−−→ φS ⊕ φS ′ φj−φj′−−−−→ φ(S + S ′) −−−→ 0

is not exact at φ(S + S ′) for some S and S ′. The sequence is always exact at both
φ(S ∩ S ′) and φS ⊕ φS ′.

Proof. The map (φi, φi′) is injective, thus the sequence is always exact at φ(S ∩ S ′).
The map φj − φj′ maps every element (v, v) to 0. Conversely, if φj(v)− φj′(v′) = 0,
then φj(v) = φj′(v′) and so v = v′ and belongs to φ(S) ∩ φ(S ′). As φ is a veil, we
have φ(S ∩ S ′) = φ(S)∩ φ(S ′). The loss of exactness on the right is characterized by
Proposition 2.6.2.

50



Through the use of the Snake lemma, we may then relate the phenome of the
interconnected system to the separate subsystems and their common part. Of course
knowing the phenomes of the separate systems and their common part does not entail
us to know the phenome of the interconnected systems. The cokernels in the exact
sequence hold the additional information required to deduce generated phenomes.
The cokernels will encode the generativity of the systems.

2.7 The solution, in a world that is not linear.

We may directly apply the above technique only if the systems are linear. However,
most of the settings were are interested in do not possess a linear structure. The goal
is to lift our problems, say, to vector spaces. Such a lift may be for instance achieved
by encoding the desired information in the dimension of a vector space.

We will develop in this section a characterization for a simple formulation as a
model example. The formulation is the common ground for most of the examples
given in Section 2.4.

2.7.1 The formulation.

Let S be a set {e1, · · · , en} of n elements. Given an undirected graph G over S, we are
interested in whether or not there is an undirected path from e1 to en in G. Neither
of the following graphs G or G′ contains a path from e1 to e3.

G : a b c G′ : a b c

But if G and G′ are combined together, by taking the union of their edge set,

G ∪G′ : a b c

the edges synchronize and a path emerges.
Let G denote the semilattice of undirected graphs over S, where the join of G,G′ ∈

G is the graph G∪G′ containing the union of the separate edges. We define φ : G →
2{∗} to be the map such that φG = {∗} if e1 and en are connected in G and φG = ∅
otherwise.

The map φ is not yet a veil, as it does not satisfy V.2. We can make φ to be a
veil by restricting it to only graphs that are a disjoint union of cliques. Those graphs
form a semilattice where the join consists of combining the edges first, then adding
edges in each existing connected component to form cliques. We may then define a
system to be a disjoint union of cliques, or equivalently, an equivalence relation on
S. The fix will, however, not affect the solution at all. The lift we perform will treat
both the graph and its closure as the same. We may then just ignore the fix, and
consider all undirected graphs over S as systems.
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2.7.2 The lift.

To lift our problem into a linear world, we let RS denote the free vector space with
basis {e1, · · · , en}. If G ∈ G, we define a subspace IG of RS to be the span of the
vectors ei − ej where {ei, ej} is an edge in G. We then lift every G to a map:

g : R2 → RS/IG

obtained by the composition of the inclusion R2 → RS that sends the generators of
R2 to e1 and en in RS, and the canonical surjection RS → RS/IG.

Proposition 2.7.1. The dimension of RS/IG is equal to the number of connected
components in G.

The kernel of the map, denoted by Φ(IG), will then encode the phenome. For
every G, we know that e1 and en are not in IG. Furthermore, e1 − en ∈ IG if, and
only if, e1 and en are connected in G via a path. We then have:

Proposition 2.7.2. The kernel Φ(IG) is isomorphic to R if e1 and en are connected
in G and is the 0 vector space otherwise.

The lift also preserves interconnection of systems.

Proposition 2.7.3. If G,G′ ∈ G, then IG∪G′ = IG + IG′.

In general, the space IG∩ I ′G is non-necessarily isomorphic to IG∩G′ , even if G and
G′ are disjoint unions of cliques. Finally, an inclusion of graphs induces maps on the
lifts:

Proposition 2.7.4. Let H be a subgraph of G, the inclusion graph homomorphism
H → G lifts to a commutative diagram:

R2 id−−−→ R2yh yg
RS/IH

i−−−→ RS/IG

where i is the canonical linear map.

Proof. Let h : H → G be an inclusion graph homomorphism. If {i, j} is an edge in
H, then {h(i), h(j)} is an edge in G. Thus if i− j ∈ IH , then hi−hj ∈ IG. Therefore
IH ' hIH ⊆ IG. The canonical surjection RS → RS/IG then factors through RS/IH
to yield i.

The connected components of a graph G form a basis for RS/IG. As H is a
subgraph of G, the map i : RS/IH → RS/IG is surjective and sends connected
components of H to connected components of G in a manner compatible with the
inclusion.
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2.7.3 Recovering exactness.

Those square diagrams can then be neatly fitted in an exact diagram:

Proposition 2.7.5. The following diagram is commutative and has exact rows:

0 −−−→ R2 −−−→ R2 ⊕ R2 −−−→ R2 −−−→ 0y (g,g′)

y y
0 −−−→ RS/(IG ∩ IG′)

(i,i′)−−−→ RS/IG ⊕ RS/IG′
j−j′−−−→ RS/(IG + IG′) −−−→ 0

Proof. To show exactness of the bottom row, apply the Snake lemma to the canonical
diagram:

0 −−−→ IG ∩ IG′ −−−→ IG ⊕ IG′ −−−→ IG + IG′ −−−→ 0y y y
0 −−−→ RS −−−→ RS ⊕ RS −−−→ RS −−−→ 0

whose upper row we know is exact from Proposition 2.6.5.

We may then recover an exact sequence from the Snake lemma. We first summa-
rize the pieces of the sequence. Every square diagram:

R2 id−−−→ R2yh yg
RS/IH

i−−−→ RS/IG

can be extended to a commutative diagram with exact columns:

0 0y y
Φ(IH)

Φ(i)−−−→ Φ(IG)y y
R2 id−−−→ R2yh yg

RS/IH
i−−−→ RS/IGy y

H(IH) = RS/(IH + 〈e1, en〉)
H(i)−−−→ H(IG) = RS/(IG + 〈e1, en〉)y y

0 0
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The space 〈e1, en〉 is the subspace of RS generated by e1 and en. The vector space
RS/(IG+〈e1, en〉), denoted byH(IG), is the cokernel of g, and the mapH(i) : H(IH)→
H(IG) sends an element a+ IH + 〈e1, en〉 in H(IH) to i(a+WH) + 〈e1, en〉 in H(IG).

The dimension of the space H(IG) is equal to the number of connected components
in G not containing either e1 or en. The map H(i) then destroys all the components in
H that do not contain e1 or en in H but that do contain them in the image component.

Finally, if G,G′ ∈ G, we recover an exact sequence.

0 Φ(IG ∩ IG′) ΦIG ⊕ ΦIG′ Φ(IG∪G′)

H(IG ∩ IG′) HIG ⊕HIG′ H(IG∪G′) 0

(Φ(i),Φ(i′)) Φ(j)−Φ(j′)

(H(i),H(i′)) H(j)−H(j′)

Proposition 2.7.6. We have:

Φ(IG∪G′) = coker((Φ(i),Φ(i′)))⊕ ker((H(i),H(i′)))

and:
H(IG∪G′) = coker((H(i),H(i′))).

Proof. Apply Proposition 2.6.4 to the six-term exact sequence.

The space coker((Φ(i),Φ(i′))) encodes whether or not e1 and en are connected in
one of the separate graphs, and the space ker((H(i),H(i′))), or equivalently ker(H(i))∩
ker(H(i′)), encodes the formation of such a path via generative effects. In particular,

Proposition 2.7.7. If Φ(IG) = Φ(IG′) = 0, then Φ(IG∪G′) = ker(H(i)) ∩ ker(H(i′)).

As an explicit characterization, we have:

ker((H(i),H(i′))) = (IG + 〈e1, en〉) ∩ (IG′ + 〈e1, en〉)�IG ∩ IG′ + 〈e1, en〉

Whether or not a path is created is then encoded in the difference of the dimensions
of (IG + 〈e1, en〉) ∩ (IG′ + 〈e1, en〉) and IG ∩ IG′ + 〈e1, en〉. Such a discrepancy would
exist as the lattice of subspaces in a not a distributive lattice, but only a modular
one. This remark will not be further pursued. The explicit characterization provided
will however be further considered in a later section dealing with graphs in multiple
universa.

The vector spaces H(I.) also admit additional structure that allows them to be
interpreted combinatorially.
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2.7.4 A combinatorial criterion.

The graphs, in this section, are assumed, for simplicity, to be disjoint union of cliques.
Let M(G) ⊆ 2S be the collection of non-empty subsets V ⊆ S of vertices, where
the induced subgraph of G on V has a perfect matching. The vector space IG can
be derived from the set M(G). The vector space IG ∩ IG′ can be derived from
M(G) ∩M(G′).

Definition 2.7.8. If M⊆ 2S, we define:

HM =

{
{e1}, {en}

}
∪
{
V − {e1, en} : V ∈M is minimal

}
.

The operation H splits the minimal elements of M whenever they contain either
e1 or en. The set HM(G) then corresponds to the induced subgraph of G on the
nodes not connected to e1 or en. The splitting procedure, thus, destroys information
in M. For instance, if G and G′ are the graphs:

e3 e3

G : e1 e2 e4 G′ : e1 e2 e4

then HM(G) = HM(G′) =
{
{e1}, {e2}, {e3}, {e4}

}
, althoughM(G) andM(G′) are

different.

Proposition 2.7.9. If Φ(IG) = Φ(IG′) = 0, then Φ(IG∪G′) = R if, and only if, there
exists a set V ⊆ S such that:

C.1. The set V is a disjoint union of sets in HM(G),

C.1’. The set V is a disjoint union of sets in HM(G′),

C.2. The set V is not a disjoint union of sets in H(M(G) ∩M(G′)).

Proof. Let V be a minimal such set. As C.1 (resp. C.1’) holds, the nodes in V that
are not connected to either e1 or en in G (resp. G′) can be perfectly matched in G
(resp. G′). As C.2 holds, by minimality of V , no two nodes in V share the same
component in both G′ and G. Furthermore, as C.2 holds, no subset in V can belong
to a cycle in G ∪G′. The nodes in V then have to form a path between e1 and en in
G ∪G′.

Conversely, if Φ(IG∪G′) = R, then kerH(i) and kerH(i′) have a common element,
an alternating sum

∑
k(−1)keik for eik ∈ S a vertex and 0 ≤ k ≤ m − 1. Pick the

common element consisting of the least number of vertices. This set of vertices forms
a set V satisfying C.1, C.1’ and C.2.

2.7.5 Concrete instances.

The answer to the following three questions is obviously yes. We answer them to
illustrate the workings of the above theory.

55



Q.1. If we combine G and H, do we get a path from a to c?

G : a b c H : a b c

We have IG = 〈a−b〉 and IH = 〈b−c〉, and thus IG∩IH = 0. We then get H(i) : R→ 0
and H(i′) : R→ 0. Clearly then Φ(IG∪G) = ker(H(i)) ∩ ker(H(i′)) = R.

Combinatorially, we have:

HM(G) = HM(H) =
{
{a}, {b}, {c}

}
.

The set HM(G) ∩M(H) is
{
{a}.{c}

}
as no subset supports a perfect matching in

both graphs. The set {b} satisfies the required conditions.

Q.2. If we combine G and H, do we get a path from a to e?

G : a b c d e H : a b c d e

We have IG = 〈a − b, d − c〉 and IH = 〈b − c, d − e〉, and thus IG ∩ IH = 0. We get
H(i) : R3 → R and H(i′) : R3 → R where R3 is generated by b, c and d. The map H(i)
sends both b and c− d to 0. The map H(i′) sends both d and b− c to 0. The element
b− c+ d then generates the intersection of the kernels. We then get Φ(IG∪H) = R.

Combinatorially, we have:

HM(G) =
{
{a}, {b}, {c, d}, {e}

}
and HM(H) =

{
{a}, {b, c}, {d}, {e}

}
.

The set HM(G) ∩M(H) is
{
{a}.{e}

}
as no subset supports a perfect matching in

both graphs. The set {b, c, d} satisfies the required conditions.

Q.3. If we combine G and H, do we get a path from a to d?

b b

G : a d H : a d

c c

We have IG = 〈a−b, c−d〉 and IH = 〈a−c, b−d〉, and then IG∩IH = 〈a−b+d−c〉. We
get H(i) : R→ 0 and H(i′) : R→ 0. Clearly then Φ(IG∪G) = ker(H(i))∩ker(H(i′)) =
R.

Combinatorially, we have:

HM(G) = HM(H) =
{
{a}, {b}, {c}, {d}

}
.

The set HM(G) ∩M(H) is
{
{a}, {b, c}, {d}

}
. Both the sets {b} and {c} satisfy the

required conditions.
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2.7.6 Encoding generativity.

We have thus related the phenome of the combined graph to the separate graphs
through the objects H(I) via an exact sequence:

0 Φ(IG ∩ IG′) Φ(IG)⊕ Φ(IG′) Φ(IG∪G′)

H(IG ∩ IG′) H(IG)⊕H(IG′) H(IG∪G′) 0

(Φ(i),Φ(i′)) Φ(j)−Φ(j′)

(H(i),H(i′)) H(j)−H(j′)

The objects H(I.) may be then be seen to encode at least what is essential explain
generative effects. As such, if the objects H(I.) are always 0, one then concludes that
generative effects are not sustained. As a rough converse, the objects H(IG) may be
seen to encode only what is essential for generative effects in the system. Indeed, we
did not use all the information of the separate graphs. For instance, the problem of
combining any of the two graphs:

e3 e3

e1 e2 e4 e1 e2 e4

with the graph:
e3

e1 e2 e4

will yield the same exact sequence from the Snake Lemma. The special theory de-
veloped in this chapter is not, however, set up to discuss well how much of the
information is kept from the system. One however ought to expect a good variation.
In some cases, a large amount of information is irrelevant and will be brushed away by
the H(I) objects. On another end, one may devise example where almost everything
from the system is fundamentally bound to play a part in generating effects. Such an
example may go along the lines of Example 2.4.1. In such situations, the generativity
of the system tends to get close to exactly what is concealed under the veil.

2.7.7 For graphs living on different vertices.

The graphs G and G′ have both been defined over the same vertex set S. The same
problem can be more generally recast by gluing two graphs defined over different
vertices over a common subsets of vertices. The problem is formally set up as follows.

Let G and G′ be undirected graphs over V and V ′ respectively, and let C be a set.
The set C is to be interpreted as the set of common vertices. As such we are given
inclusions:

i : C → V and i′ : C → V ′.

The nodes i(v) ∈ V and i′(v) ∈ V ′ will be identified as the same vertices, to form the
glued graph. The gluing construction mathematically amounts to taking a pushout
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from C along i and i′. Pushouts however are outside the scope of this chapter, and
we thus revert to an algorithmic construction. We form an undirected graph G∗ over
a set V ∗. If n, n′ and c denote the cardinality of V , V ′ and C, then V ∗ has cardinality
n+ n′ − c. The set V ∗ will then be seen to contain both V and V ′. As such we have
two inclusions:

j : V → V ∗ and j′ : V ′ → V ∗,

whose images coincide on C. The edges of G∗ are j(u) ∼ j(v) whenever u ∼ v in G
and j′(u′) ∼ j′(v′) whenever u′ ∼ v′ in G′.

We then pick two distinguished vertices s and t. Each of the vertices s and t may
either lie in V , in V ′ or in both (i.e., in C). The question then is:

Question 2.7.10. Given G and G′ to be glued along a vertex set C, and a compatible
choice of s and t, is there an undirected path from s to t in G∗?

If the set C is equal to V and V ′ (i.e., i and i′ are bijections), we then recover the
original formulation of the situation, whereby the graphs are defined over the same
vertex set.

The characterization.

We get different cases, depending on whether or not s and t lie in V or V ′. All the
cases can be dealt with mathematically in an implicit manner. We will however deal
with some explicitely for clarity of exposition, and present the rest in a generic form.
We however omit proofs and refer the reader to [Ada17g] for more details.

Let n, n′ and c be the cardinality of V , V ′ and C. The inclusion i : C → V (resp.
i : C → V ′) induces an injective linear map ι : Rc → Rn (resp. ι′ : Rc → Rn′). If I is
a subspace of Rn (resp. of Rn′), we define π(I) (resp. π′(I)) to be {a ∈ Rc : ιa ∈ I}
(resp. π′(I) = {a ∈ Rc : ι′a ∈ I}. Note that π(I) and π′(I) are both subspaces of Rc.

We will suppose that no path from s to t already exists in G or in G′, separately.
That could either be due to the fact that either s or t is not in V (or in V ′), or that
the edges, in the separate graphs, simply do not synchronize to produce a path.

Case 1. We consider the case where s and t are in G but not in G′. A path is then
created if, and only if:

π(IG + 〈s, t〉) ∩ π′(IG′)�π(IG) ∩ π′(IG′) 6= 0

Checking the presence of such an inequality amounts to comparing the dimensions
of π(IG + 〈s, t〉) ∩ π′(IG′) and π(IG) ∩ π′(IG′). Note that these are subspaces of R|C|,
i.e. the computation is performed only over the common nodes. Furthermore, by
fixing G and C, we can vary G′ only computing π′(IG′), without having to recompute
additional information on G.
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Case 2. We consider the case where s is in G but not in G′ and t is in both. A
path is then created if, and only if:

π(IG + 〈s, t〉) ∩ π′(IG′ + 〈t〉)�π(IG) ∩ π′(IG′) + 〈t〉 6= 0

Case 3. We consider the case where s is in G but not in G′ and t is in G′ but not
in G. A path is then created if, and only if:

π(IG + 〈s〉) ∩ π′(IG′ + 〈t〉)�π(IG) ∩ π′(IG′) 6= 0

All other cases. In the general case, a path is created if, and only if:

π(IG + JG) ∩ π′(IG′ + JG′)�π(IG) ∩ π′(IG′) + JG∗
6= 0

where:

JG =


〈s〉 if s ∈ V and t /∈ V
〈t〉 if s /∈ V and t ∈ V
〈s, t〉 if s ∈ V and t ∈ V
0 if s /∈ V and t /∈ V

JG′ =


〈s〉 if s ∈ V ′ and t /∈ V ′
〈t〉 if s /∈ V ′ and t ∈ V ′
〈s, t〉 if s ∈ V ′ and t ∈ V ′
0 if s /∈ V ′ and t /∈ V ′

JG∗ =


〈s〉 if s ∈ C and t /∈ C
〈t〉 if s /∈ C and t ∈ C
〈s, t〉 if s ∈ C and t ∈ C
0 if s /∈ C and t /∈ C

We refer the reader to [Ada17g] for the details and some proofs on such characteri-
zations. By defining bases, the dimensions may be computed using matrix operations.
Those operations could also lend themselves to combinatorial interpretations given
the nature of the problem. The direction will not be further pursued in this chapter.

2.8 Concluding remarks.

The chapter did not explicitely expound most of the mathematical connections that
arise throughout. Its goal was to present the theory with the least amount of diversion
possible. We end with three general remarks.

The maps between the systems, and their lifts, played an important role in the
characterization. They did not, however, explicitely appear when interaction and
generativity were initially defined. They were, nevertheless, always implicit in the
partial order on the semilattice. The general level of the theory is then achieved
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by explicitely defining maps, or morphisms, between systems. In the general theory,
those morphisms will be as important as (if not more important than) the systems
themselves.

The lifts in this chapter have been described through vector spaces. Different
linear (or abelian) objects ought to, however, be used to capture richer structures in
the semilattice of systems and veils. The notion of exact sequences, and the results
of the snake lemma, will remain in effects. Recovering information from the exact
sequence will, however, not be as straightforward as it is in the case of vector spaces.
It might require extra information from the systems. Our use of the snake lemma
is, furthermore, only a special example of a mechanism relating the phenome of the
combined system to the separate subsystems.

Finally, the tractabilty of the problem—coping with generative effects sustained
by the veil—will depend on the tractability of the lifts. The same problem may
possess different lifts. The better the lift is in capturing the structure of the problem,
the better the linking solution is.

2.9 Appendix: On computability.

The ideas presented in this chapter, and the algebraic machinery, can be used to
derive computable criteria for phenomes to emerge. As a certificate, we implemented
a verbose program (in GAP v.4.8.3) of the path example. Below is a snapshot of
the output of the program. The output is somewhat self-explanatory. The program
takes two graphs G and H as input. The common nodes are then specified in both
G and H. The endpoints A and E are also specified accordingly. The program then
outputs whether or not there exists a path from A to E once the common nodes are
identified. The answer is obtained via the characterization provided in the earlier
section, on graphs living on different vertices.

-------------------------

Info of G:

-------------------------

Nb of nodes: 3

Nb of edges: 1

List of Edges: [ [ 1, 2 ] ]

Nb of Components: 2

Dim of H^1(G): 0

No path in G.

-------------------------

Info on H:

-------------------------

Nb of nodes: 3

Nb of edges: 1
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List of Edges: [ [ 2, 3 ] ]

Nb of Components: 2

Dim of H^1(H): 0

No path in H.

-------------------------

Info on Common:

-------------------------

Nb of nodes: 3

IDs in G: [ 1, 2, 3 ]

IDs in H: [ 1, 2, 3 ]

-------------------------

Distinguished nodes:

-------------------------

A value of -1 indicates non-existence.

A in G @: 1

E in G @: 3

A in H @: 1

E in H @: 3

-------------------------

Pulling Back

-------------------------

Dim of pullback from G: 2

Dim of pullback from H: 2

Dim of Common System: 3

Dim of H^1(Common): 1

-------------------------

Decision Criterion:

-------------------------

Dim of piH^1(G): 0

Dim of piH^1(H): 0

Dim of Kernel of F^3 --> piH^1(G)(+)piH^1(H): 3

Quotienting subspace in H^1(Common): 2

The program computes 4 objects:

Dim of piI_G: 1

Dim of piI_H: 1

Dim of intersection: 0

Augmented Dimension: 2 (1)
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Dim of pi(I_G+<A,E>): 3

Dim of pi(I_H+<A,E>): 3

Dim of intersection: 3 (2)

Compare (1) and (2): path emerges iff different.

#########################

Path exists!

#########################

Path emerged!

Modifying the graph H yields:

-------------------------

Info of G:

-------------------------

Nb of nodes: 3

Nb of edges: 1

List of Edges: [ [ 1, 2 ] ]

Nb of Components: 2

Dim of H^1(G): 0

No path in G.

-------------------------

Info on H:

-------------------------

Nb of nodes: 3

Nb of edges: 1

List of Edges: [ [ 1, 2 ] ]

Nb of Components: 2

Dim of H^1(H): 0

No path in H.

-------------------------

Info on Common:

-------------------------

Nb of nodes: 3

IDs in G: [ 1, 2, 3 ]

IDs in H: [ 1, 2, 3 ]

-------------------------
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Distinguished nodes:

-------------------------

A value of -1 indicates non-existence.

A in G @: 1

E in G @: 3

A in H @: 1

E in H @: 3

-------------------------

Pulling Back

-------------------------

Dim of pullback from G: 2

Dim of pullback from H: 2

Dim of Common System: 2

Dim of H^1(Common): 0

-------------------------

Decision Criterion:

-------------------------

Dim of piH^1(G): 0

Dim of piH^1(H): 0

Dim of Kernel of F^3 --> piH^1(G)(+)piH^1(H): 3

Quotienting subspace in H^1(Common): 3

The program computes 4 objects:

Dim of piI_G: 1

Dim of piI_H: 1

Dim of intersection: 1

Augmented Dimension: 3 (1)

Dim of pi(I_G+<A,E>): 3

Dim of pi(I_H+<A,E>): 3

Dim of intersection: 3 (2)

Compare (1) and (2): path emerges iff different.

#########################

No Path.

#########################

Finally, as an example of graphs defined on different sets of vertices, we get:

-------------------------
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Info of G:

-------------------------

Nb of nodes: 13

Nb of edges: 10

List of Edges: [ [ 3, 5 ], [ 1, 7 ], [ 6, 7 ], [ 6, 12 ],

[ 12, 2 ], [ 10, 8 ], [ 8, 9 ], [ 11, 9 ], [ 9, 4 ], [ 13, 4 ] ]

Nb of Components: 3

Dim of H^1(G): 2

No path in G.

-------------------------

Info on H:

-------------------------

Nb of nodes: 17

Nb of edges: 9

List of Edges: [ [ 2, 4 ], [ 1, 5 ], [ 5, 13 ], [ 3, 7 ],

[ 7, 9 ], [ 9, 15 ], [ 11, 9 ], [ 11, 13 ], [ 6, 10 ] ]

Nb of Components: 8

Dim of H^1(H): 7

No path in H.

-------------------------

Info on Common:

-------------------------

Nb of nodes: 5

IDs in G: [ 1, 2, 3, 4, 5 ]

IDs in H: [ 1, 2, 3, 4, 5 ]

-------------------------

Distinguished nodes:

-------------------------

A value of -1 indicates non-existence.

A in G @: 10

E in G @: -1

A in H @: -1

E in H @: 9

-------------------------

Pulling Back

-------------------------

Dim of pullback from G: 3

Dim of pullback from H: 2

Dim of Common System: 4
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Dim of H^1(Common): 4

-------------------------

Decision Criterion:

-------------------------

Dim of piH^1(G): 2

Dim of piH^1(H): 1

Dim of Kernel of F^5 --> piH^1(G)(+)piH^1(H): 2

Quotienting subspace in H^1(Common): 1

The program computes 4 objects:

Dim of piI_G: 2

Dim of piI_H: 3

Dim of intersection: 1

Augmented Dimension: 1 (1)

Dim of pi(I_G+<A,E>): 3

Dim of pi(I_H+<A,E>): 4

Dim of intersection: 2 (2)

Compare (1) and (2): path emerges iff different.

#########################

Path exists!

#########################

Path emerged!
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Chapter 3

Where do cascades come from?

Abstract

We argue that the mathematical structure enabling cascade-like effects to intuitively
emerge coincides with certain Galois connections. We introduce the notion of gener-
ative effects to formalize cascade-like phenomena. We define the notion of a veil, and
show that such effects arise from either concealing mechanisms or forgetting charac-
teristic from a system. We study properties of the veil, introduce dynamical veils and
end by discussing factorizations and lifts. The goal is to initiate a mathematical base
that enables us to further study such phenomena. In particular, generative effects will
be linked to a certain loss of exactness. Homological algebra, and related algebraic
methods, then come in to characterize such effects.
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3.1 Introduction.

We view cascade-like phenomena as not intrisic to the systems in play. They rather
arise from a separation, between what we deem as observable from the system, and
the counterpart of what is deemed to be concealed. Such phenomena will then appear
once the behavior of the observable part cannot be explained by only what is seen,
when a system is modified or made to interact with another. In such a setting, the
parts of the system that are concealed, interact and produce more (or less) that
what is deemed expected. The observable part of the system ought to be thought of
as a property, a feature or a subpart of the system. Cascade-like phenomena then
arise exactly when such a property does not behave well under modification of a
system, or interconnection with another. Such instances are considered a nuisance
in engineering practice, and our continual desire is to find modular, compositional
means to interconnect and understand systems. It is however those nuisances that
create the intuition of cascading behavior. They then should be a central component
in a theory that aims to understand them.

3.1.1 A recipe for cascading phenomena.

One archetypical example of cascade effects emerges from a sequence of dominoes,
minutiously set vertically one after the other. Topple the first in the sequence, and
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its sucessors come toppling down in an avalanche. But where does this intuition arise
from? We argue that a situation of cascade-like phenomena requires two ingredients.
The first ingredient is the presence and interplay of several systems: one monolithic
system by itself cannot produce cascading phenomena. The second ingredient is a
limited observation, on our part, of the system: cascading phenomena emerge only
when we decide to not observe everything. To elucidate the two ingredients, let us
consider the following two fictive situations. The aim of the fictive situations is to
reveal sensitive issues when it comes to defining cascading phenomena, and potentially
to reveal anomalies in our intuition regarding the effects. Dealing appropriately with
each of the two issues are the ingredients, and they ought to be incorporated in a
sound definition of cascade effects.

The first ingredient.

Let us suppose that our dominoes are really thin. We align the dominoes in a chain,
each consecutive pair separated by a fixed distance d. If we topple the first domino,
it falls and hits the second. The second falls in turn to hit the third. The falling
sequence then goes on. Now suppose we start decreasing d. While the dominoes are
separated, the intuition for cascading phenomena persists. But what happens when
d becomes 0, where the dominoes are now touching? Are there any cascade effects?

If we suppose that cascade effects disappear, then why do they disappear? If
the dominoes are moved apart by an imperceptible bit, the effects have to come
back. Should the fact that they are meerly touching modify the presence of such a
phenomenon? Alternatively, we can suppose that the effects remain. But then let us
suppose that we glue the dominoes together, forming one thick domino. If we topple
the first one, the rest come falling down. Is the intuition in this case still present?

The presence of the phenomenon hinges on having multiple systems interacting.
In the case, where the dominoes are touching, whether separate or glued, thinking of
them as a monolothic system forces the intuition to vanish. But if we explicitely think
of them as separate parts (although glued) the intuition remains. A single domino
falling by itself can then exhibit such a phenomena, if we split it (in our minds) to
several pieces of thinner glued dominoes.

The second ingredient.

Let us conceive a mechanical device, equipped with a sequence of equally spaced slots.
We vertically fix (or glue) in each slot one domino, making it immovable. The slots
however are not rigid and can rotate, around a horizontal axis. Whenever the slot
rotates, the domino it fixes rotates with it, again around a horizontal axis to yield
a fall effect. The device is engineered so that, once it operates, the ith slot begins
rotating at time (i− 1)T for some fixed time interval T . The interval T is fixed to be
the time needed for the first domino to touch the second domino, once the first slot
starts to rotate. As the slots are equally spaced, T denotes the time needed for an
arbitrary domino to barely touch its successor. We now operate the device, and the
first slot begins to rotate. The second slot begins to rotate after T . The ith slot begins
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to rotate after (i−1)T . The whole scheme consists of a timed mechanical device that
successively rotates the slots, rotating the dominoes along the way. We can hardly
claim any cascading effects while seeing and understanding the whole machinery in
work.

However, let us suppose that we instead cover the mechanical device with a veil.
The slots and machinery are fully concealed, and we can only observe the dominoes
sticking out. Whatever is concealed under the veil does not exist for us anymore.
Ideally, we cannot even know that something (if anything) is hidden. If the device
(which we cannot know of its existence) begins to operate, the only thing we can
ever observe is a sequence of dominoes toppling one another. Cascade effects would
have emerged through the use of the veil. We may claim that the mechanical device
is not a natural process. However, the physical laws of mechanics can be regarded
themselves as the device. We thus recover the cascading intuition, by only focusing on
the dominoes, and forgetting the physical laws. It is for such a reason why cascading
phenomena are seen to arise in the case of the first ingredient where the dominoes are
separated. We non-intentionally hide parts of the physical laws governing the whole
setup when observing the dominoes.

Cascade effects cannot be conjured without the interplay of multiple systems.
However, the interaction, or interconnection, of several systems only yields us an
interconnected system. An interconnection theory by itself cannot explain interaction-
related effects. Such effects only emerge when we conceal parts, or mechanisms, of the
systems. In case we observe the whole systems, the intuition disappears. In case we
observe nothing at all from the systems, the intuition also disappears. The intuition
emerges whenever the observable parts of the separate systems fail to explain the
observable part of the interconnected system.

3.1.2 Why do we ask such a question?

Our reason for asking such a question is not to indulge in philosphical musing. Our
goal is to analyze cascade-like phenomena. The idea of a veil gives rise to a mathe-
matical picture later on described. In the full generality of the theory, cascade-like
effects can be linked to a certain loss of exactness. Homological algebra then comes
into the setting to analyze the situation. Specifically, we can extract algebraic object
from the systems that encode their potential to generate effects. Those objects can
then be used to understand the phenomenon, and link the behavior of the intercon-
nected system to its separate constituents. Mathematically, this picture enables us to
develop cohomology theories to understand cascade-like effects. The 0th order coho-
mology objects encode the phenome of the system, and higher order objects encode
potentials to produce effects.

3.1.3 The toy mathematical picture.

We will first substitute the term cascade effects with the more general term of inter-
actional effects, namely effects that arise from the interaction of systems. Those can
be informally understood as things that occur once systems interact, and that would
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not have occured without interaction. Cascading phenomena can then be loosely seen
as a subclass of interactional effects.

To formally define interactional effects, we said we need two ingredients. First, we
need a notion of interaction or interconnection of systems. The terms interaction and
interconnection will be used synonymously. However, such a notion by itself cannot
give rise to interactional effects. The interconnection of two systems only gives an
interconnected system, and nothing more. The second ingredient then consists of
equipping the theory of interconnection with a notion of interactional-effects. Such
effects emerges when we single out what is observable from a system.

For simplicity, let S be a set and let ⊕ be a binary operator on S. The space
(S,⊕) will be space of systems, where s1 ⊕ s2 denotes the interaction of s1 and s2.
The notion of interaction is then settled. An observation is then a map Φ from S to
a set P . The set P ought to be thought of a space of simplified systems, and thus
gains a notion of interaction.

Interactional effects are then said to emerge whenever:

Φ(s1 ⊕ s2) 6= Φ(s1) + Φ(s2)

In this chapter, we will be concerned with a specific structure. We formalize the
situation to one that admits a generative nature. The informal idea of generativity
can be illustrated through the following example.

3.1.4 A contagion phenomenon.

To dilute the abstraction and fill in mathematical details, we consider a situation of
contagion. A system will consist of an undirected graph. Each node in the graph
can be either infected (active or failed) or healthy (inactive or non-failed), and is
assigned an integer k as a threshold. All nodes are initially healthy. A node then
becomes infected if at least k of its neighbors are infected. Once a node is infected, it
remains infected forever. In this case, the order of infections does not affect the final
set of infected nodes. The system we described works on arbitrary undirected graphs,
but for exposition, we will consider only systems defined on two nodes, as concrete
examples. Specifically, let us consider the systems, S1 and S2:

S1 : 2
A

1
B

S2 : 0
A

2
B

The system S1 can be summarized as “if A is infected, then B becomes infected”,
while the system S2 can be summarized as “node A is infected”. One can see that
when the systems S1 and S2 are made to interact with each other, they will intuitively
result in a cascade-like situation where B becomes infected. The question is: how do
we formalize such an intuition? To formalize it we need two ingredients: a notion of
interaction and a notion of effects equipped on top of interaction.

Having two systems interact, or equivalently interconnecting two systems, consists
of keeping the minimum of the thresholds. The systems S1 and S2 interact to yield
the system S1 ∨ S2 given by:
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S1 ∨ S2 : 0 1
A B

Interaction can be understood as combining the description of the two systems. The
system S1 ∨ S2 is in fact summarized as:

“if A is infected, then B becomes infected

AND

node A is infected”.

The systems merge their update rules. The operator ∨ then gives us a notion of
interaction through the merging of rules. This notion by itself however does not
account for the cascading phenomenon.

To retrieve the intuition, we need to focus on a particular feature of our sys-
tems. Let Φ(S) denote the final set of infected nodes, that arise from system S. By
focusing on the final set of infected nodes, we have discarded any dynamics in the
system that could potentially lead to more infections. A set of infected nodes can be
interpreted as a simplified system where thresholds are either 0 or ∞ depending on
whether they are infected (0) or not (∞). They thus inherit a notion of interaction,
of merging descriptions, which coincides with set union. Cascade-like intuition then
arises because:

Φ(S1 ∨ S2) 6= Φ(S1) ∪ Φ(S2)

Indeed, Φ(S1)∪Φ(S2) = {A} as Φ(S1) = {} and Φ(S2) = {A}. However, Φ(S1∨S2) =
{A,B}. The observable part of the separate systems (i.e., their final set of infected
nodes) fails to explain the observable part of the combined system. The discarded
mechanisms interact in the full systems to produce new observable that cannot be
accounted for.

More generally, let Σ denotes the set of nodes in the graph. If 2Σ denotes the set
of subsets of Σ, then the example lends itself to the following picture:〈

2Σ,∪
〉 Φ←−−−

〈
System,∨

〉
The effects are now encoded in the inexactness of the map Φ. The map Φ is not
unstructured, and possesses certain properties. The chapter sets forth a thesis that
cascade-like effects arise from situations akin to the diagrammatic representation
above. The spaces of systems and phenomes vary, and are preordered sets. The
map Φ tends to admit an adjoint, thus forming a Galois connection between systems
and phenomes. Elements of the spaces interact to yield their join (i.e., their least
upper-bound) whenever it exists. The effects are then sustained whenever Φ fails to
commute with joins, i.e., the interaction operator.

3.1.5 Summary.

Generative effects are seen to arise from the pattern:〈
Phenome,∨

〉 Φ←−−−
〈
System,∨

〉
.
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The space
〈
System,∨

〉
(resp.

〈
Phenome,∨

〉
) is a preordered set of systems (resp.

of phenomes) where every pair of systems (resp. of phenomes) interact to yield their
least upper-bound, via ∨, the join operator. The map Φ acts as the described veil,
partially concealing the systems and leaving the phenome bare. It admits an adjoint,
thus forming a Galois connection. Its adjoint recovers from a phenome the simplest
system explaining it. Generative effects are said to be sustained whenever:

Φ(S ∨ S ′) 6= Φ(S) ∨ Φ(S ′).

They are sustained whenever the phenome of the combined system cannot be ex-
plained by the phenomes of the separate systems.

3.1.6 Outline of the chapter

The chapter expounds this formalization. It justifies the choices made, and equips
the mathematics with the needed intuition. We continue to elucidate the example
on contagion in Section 3. We introduce the notion of a veil and generative effects
in Section 4. Those can be seen to emerge from either concealing mechanisms in the
systems (developed in Section 5) or forgetting characteristics (developed in Section
6). Indeed, we establish in Section 7 that every veil can be factored into an instance
of these two cases, and discuss its relation to Galois connections. We introduce, in
Section 8, the notion of a dynamical veil to capture temporal aspects in cascade effects.
We finally develop techniques of factorization and lifts, in Section 9, to retrieve veils
from non-veils, and end with some remarks in Section 10.

3.1.7 The goal of this line of research

A fuller, more englobing, development of the concepts can be performed via the use
of categories. We however restrict to preordered sets to not introduce unnecessary
complications for the readers. Preorders can be trivially regarded as categories, and
are thus a special case of the general concept. Nevertheless, most of the analysis
provided in this chapter can be extended out to the more general case. For more
details on the general case, we refer the reader to [Ada17g]. In the full generality of
the theory, generative effects are linked to a certain loss of exactness. Homological
algebra then comes into the setting to analyze the situation. Specifically, we can
extract algebraic object from the systems that encode their potential to generate
effects. Those objects can then be used to understand the phenomenon, and link the
behavior of the interconnected system to its separate constituents. Mathematically,
this picture enables us to develop (co)homology theories to understand cascade effects.
The 0th order (co)homology objects encode the phenome of the system, and higher
order objects encode potentials to produce effects. We refer the reader to [Ada17i]
for a thorough development of this line of research.
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3.2 Mathematical preliminaries and definitions.

A preordered set or proset 〈S,≤〉 is a set S equipped with a (binary) relation ≤
that is reflexive and transitive. If ≤ is also antisymmetric, then ≤ becomes a partial
order and 〈S,≤〉 becomes a partially ordered set or poset. A proset is said to be
a join-semilattice (resp. meet-semilattice) if every pair of elements admits a least
upper-bound, termed join (resp. greatest lower-bound, termed meet). A proset that
is both a join-semilattice and a meet-semilattice is said to be a lattice. Note that if
a proset 〈S,≤〉 admits finite joins (resp. finite meets) then ≤ is antisymmetric (see
e.g., Proposition 3.4.2 for more details).

A proset is said to be finitely cocomplete (resp. finitely complete) if every finite
subset of it admits a join (resp. meet). A finitely cocomplete (resp. finitely complete)
proset is then only a join-semilattice (resp. meet-semilattice) with a minimum (resp.
maximum) element. A proset S is said to be cocomplete (resp. complete) if every
subset of it admits a join (resp. meet). A cocomplete proset is then necessarily
complete: the lower-bounds of a subset admit a join by cocompleteness. The converse
also holds. A complete lattice is then a lattice that admits arbitrary meets and joins.
A complete lattice is thus equivalently a cocomplete (resp. complete) preordered set.

3.2.1 Notation.

If S is a set, then 2S denotes the set of subsets of S. If S and T are sets (resp.
preordered sets), then ST denotes the set of maps (resp. order-preserving maps) from
T to S. If S and T are prosets, then the set ST inherits a natural preorder relation
f ≤ g if, and only if, f(t) ≤ g(t) for all t ∈ T .

3.3 The contagion phenomenon, revisited.

The example presented in the introduction is only an instance of a more general
class of systems. A system in concern consists of n nodes, or parts. Each node can be
either infected (active or failed) or healthy (inactive or non-failed), and is attributed a
collection of neighborhood sets. A neighborhood set is only a subset (possibly empty)
of the n nodes. Each node can be attributed either one, multiple or no neighborhood
sets. A node becomes infected if all the nodes in (at least) one of its neighborhood
sets are infected. Once a node becomes infected, it remains infected forever. Again,
the order of infections does not affect the set of final infected nodes.

The example presented in the introduction can be seen as a special case where
the neighborhood sets of node i are only subsets of cardinality k, the threshold of i.
The operator Φ described, and its inexactness, carries through unchanged.

3.3.1 Syntax and interpretation.

Let Σ := {a, b, · · · , h} be a finite set of n elements. The set 2Σ denotes the set of
subsets (or powerset) of Σ. For notational convenience, we define D (for Description)
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to be the set:
Σ→ 22Σ

A map in D assigns to every element of Σ a collection of subsets of Σ. A system,
as presented at the start of the section, is syntactically described by a map N ∈ D.
Conversely every map in D is a meaningful syntactic description of a system.

Interpretation.

The syntactical description N is interpreted as follows. A system is made up of n
part, labeled say a, b, · · · , h. To each part i is assigned a collection of neighborhood
sets N (i). Every part can be either infected (active or failed) or healthy (inactive
or non-failed). All parts are initially inactive. Part i is infected at time m + 1 if,
and only if, either it was infected at time m or all the parts in some neighborhood
set N ∈ N (i) of i are infected at time m. Thus, once a part is infected, it remains
infected forever.

Let Am denote the set of infected parts at time m. We initiate A0 to be the empty
set, and recursively define A1, A2, · · · such that i ∈ Am+1 if, and only if, either i ∈ Am
or N ⊆ Am for some set N ∈ N (i). Therefore, every map in D assigns to part i a
monotone (or order-preserving) Boolean function φi : 2Σ → 2{∗}. The set {∗} denotes
the set with one element. Then:

i ∈ Am+1 iff either i ∈ Am or φi(Am) = {∗}.

Whenever the set Σ is finite, the dynamics converge after finitely many steps.

Proposition 3.3.1. If Σ has cardinality n, then An = An+1.

Proof. If An 6= An+1, then Am 6= Am+1 for 0 ≤ m ≤ n− 1. Thus, if An 6= An+1 then
An would contain more than n elements.

We thus refer to the final set of infected nodes as A∞. The set A∞ is only used
to correspond to the case where A0 is initialized to the empty set.

Interaction.

Two systems are made to syntactically interact by merging their descriptions. Syn-
tactic descriptions N ∈ D and N ′ ∈ D interact by yielding their union N ∪N ′ ∈ D
where (N ∪ N ′)(i) = N (i) ∪ N ′(i). The collection of neighborhoods are combined.
Indeed, we can order D by inclusion as N ⊆ N ′ if N (i) ⊆ N ′(i) for all i. Every pair
of descriptions N and N ′ in the partially ordered set D admits a least upper-bound
denoted by N ∪N ′.

3.3.2 Semantics.

To study the systems, we will recover from a syntactical description N ∈ D, a map
fN : 2Σ → 2Σ that sends S ⊆ Σ to the final set of infected nodes if A0 was initialized
to S, i.e., if all the parts in S are initially infected.
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Proposition 3.3.2. The set A∞ corresponding to the final set of infected nodes is
fN (∅).

Proof. The proof is immediate by definition of A∞.

As mentioned, the set A∞ is only used to correspond to the case where A0 is
initialized to the empty set.

The map fN derived from a syntactical description N may be thought of as being
the object that gives a meaning to the description, the semantics behind the syntax.
Different syntactical descriptions in D may yield the same system object. However,
different system objects refer to different systems, when it comes to looking at the
final set of infected nodes. The system object fN can be seen as the representation-
independent object we are interested in. We will thus refer, in this section, to fN as
the system (object), as opposed to N which is referred to as the system syntax or
description.

Definition 3.3.3. A map f : 2Σ → 2Σ is said to satisfy A.1, A.2 and A.3, respec-
tively, if:

A.1. S ⊆ f(S) for all S ⊆ Σ.

A.2. If S ⊆ S ′ then f(S) ⊆ f(S ′), for all S, S ′ ⊆ Σ.

A.3. ff(S) = f(S) for all S ⊆ Σ.

Proposition 3.3.4. If N ∈ D, then fN : 2Σ → 2Σ satisfies A.1, A.2 and A.3.

Proof. The axioms A.1, A.2 and A.3 immediately follow from the description of the
systems. We refer the reader to [Ada17b] for more details.

Conversely, we have:

Proposition 3.3.5. If f : 2Σ → 2Σ satisfies A.1, A.2 and A.3, then f = fN for some
description N ∈ D.

Proof. Construct N such that N (i) =
{
S ∈ 2Σ : i ∈ f(S)

}
.

We then define System to be the set of maps satisfying A.1, A.2 and A.3. The
maps in System are often known as closure operators. On one end, they appeared in
the work of Tarski (see e.g., [Tar36] and [Tar56]) to formalize the notion of deduction.
On another end, they appeared in the work of Birkhoff, Ore and Ward (see e.g.,
[Bir36], [Ore43] and [War42], respectively), parts of foundational work in universal
algebra. The first origin reflects the consequential relation in the effects considered.
The second origin reflects the theory of interaction of multiple systems. Closure
operators appear as early as [Moo10].

If we order System by:

f ≤ g if f(S) ≤ g(S) for all S ⊆ Σ,

then 〈System,≤〉 becomes a partially ordered set. The relation f ≤ g can be thought
of as f is a subsystem of g. Furthermore, every pair of systems f and g admits an
upper-bound f ∨ g.
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Proposition 3.3.6. If Σ has cardinality n, then f ∨ g = (fg)n.

Proof. The map (fg)n satisfies A.1, A.2 and A.3, and belongs to System. Indeed,
A.1 and A.2 are preserved by composition. The axiom A.3 is satisfied as (fg)n(S) =
(fg)n+1(S) whenever Σ has cardinality n, by an argument similar to that in the proof
of Proposition 3.3.1. Finally, if h ∈ System and f ∨ g ≤ h, then hf = fh = h and
hg = gh = h. Thus (fg)n ≤ (fg)nh ≤ h whenever f ∨ g ≤ h.

The poset System is then a join-semilattice 〈System,≤,∨〉. The semilattice also
admits meets (i.e., greatest lower-bounds) making it a lattice. Its minimum element
is the identity map, while its maximum element is the map − 7→ Σ.

Two systems can be seen to interact (semantically) by iteratively applying their
system maps till they yield an idempotent map, i.e., satisfying A.3. The properties A.1
and A.2 are always preserved under composition. Most importantly, the semantical
interaction of systems coincides with the syntactical interaction of systems.

Proposition 3.3.7. If N and N ′ are descriptions, then fN∪N ′ = fN ∨ fN ′.

Proof. We have fN∪N ′(S) = S if, and only if, whenever N ∈ N ∪N ′(i) lies in S, then
i ∈ S. Or equivalently if, and only if, fN (S) = fN ′(S) = S. Furthermore, the fixed-
points of fN ∨ fN ′ are the sets that are fixed-points of both fN and fN ′ . The result
then follows as the maps in System are uniquely determined by their fixed-points.
See e.g., Theorem 3.5.5 or [Ada17c] for more details on the last assertion.

We established thus far a theory of interconnection, via the space 〈System,∨〉.
However, interconnecting two systems will only give us an interconnected system.
No cascading phenomena are yet present. Those will only emerge once we decide to
conceal features in the systems.

3.3.3 The contagion intuition.

To recover the intuition, we conceal the dynamics. We do so by only keeping the
final set of infected nodes. We are thus observing from our systems, subsets of Σ
corresponding to the final set of infected nodes. To this end, we define Φ : System→
2Σ to be the map sending f to its least fixed-point. Such a map is well defined, as:

Proposition 3.3.8. If f : 2Σ → 2Σ satisfies A.1, A.2 and A.3, then its set of fixed-
points fix(f) = {S : fS = S} when ordered by inclusion forms a complete lattice.
Furthermore, if S and S ′ are fixed-points of f , then S ∩ S ′ is a fixed-point of f .

Proof. Let S, S ′ ∈ fix(f) be fixed-points. We have f(S ∩ S ′) ≤ f(S) = S and
f(S ∩ S ′) ≤ f(S ′) = S ′ by A.2. As S ∩ S ′ ≤ f(S ∩ S ′) by A.1, we get f(S ∩ S ′) =
S ∩ S ′ ∈ fix(f). Let S denote the collection of fixed-points that contain both S and
S ′, namely:

S := {T ∈ fix(f) : S ⊆ T and S ′ ⊆ T}

As Σ ∈ fix(f), the set S is non-empty. The least-upper-bound of S and S ′ in fix(f)
is then

⋂
S, the intersection of all the sets in S. The greatest lower-bound of S and
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S ′ is S ∩ S ′. The set fix(f) then forms a lattice. The lattice fix(f) is complete as it
is finite.

The map Φ is then well defined, as a complete lattice admits a minimum element.
This minimum element corresponds to the set-intersection of all the fixed-points of
f .

We term our observations, namely the subsets of Σ, as phenomes. We also refer
to 2Σ as the space of phenomes, denoted by Phenome.

Proposition 3.3.9. The map Φ : System→ Phenome satisfies:

P.1. If f ≤ g in System, then Φ(f) ⊆ Φ(g).

P.2. If S ∈ Phenome, then {f : S ⊆ Φ(f)} has a (unique) minimum element.

Proof. (P.1) If f ≤ g then {S : fS = S} ⊇ {S : gS = S}. (P.2) For every S, the
system − 7→ − ∪ S is the minimum element of {f : S ⊆ Φ(f)}.

First, the map Φ is order-preserving, and thus preserves the subsystems relation
among the systems. Second, every set of infected nodes can be lifted to a simplest
system explaining that set.

Such a map Φ, satisfying P.1 and P.2, from the space of systems to a space
of phenomes is termed a veil. In this context, contagion phenomena (later termed
generative effects) arise precisely whenever:

Φ(f ∨ g) 6= Φ(f) ∨ Φ(g).

They arise whenever keeping only the final set of infected nodes cannot account for
what happens when the two systems interact. Indeed, the mechanisms that we have
concealed interact and activate, or infect, more nodes than we can observably account
for. The phenomenon is now encoded in the inexactness of the veil Φ. The inequality
is the essential point.

We return to this example as the chapter unfolds. We first set out to describe the
general structure of the situation, and formally introduce generative effects.

3.4 The two ingredients, formalized.

As illustrated, two ingredients are required to sustain generative effects. We first need
a theory of interaction or interconnection of systems. A theory of interconnection by
itself cannot, however, account for such phenomena. We need a notion of a veil, that
conceals features from a system, and keeps a phenome observable. Generative effects
then emerge whenever the phenome of the combined system cannot be explained by
the phenomes of the separate systems.
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3.4.1 Interaction of systems.

Let System be a preordered set, namely a set equipped with a binary relation ≤ that
is reflexive and transitive. Each element of System is considered to be a system. The
≤ relation dictates how the systems are related to each other.

Definition 3.4.1. A system s is said to be a subsystem of s′ if s ≤ s′.

Two systems will interact to yield their least upper-bound, only if it exists. We
will generally consider that least upper-bounds of finite subsets always exist, as such
conditions will (or can be made to) be satisfied in most of our situations in concern.
A preordered set is said to be finitely cocomplete, if every finite subset of it admits a
(unique) least upper-bound.

Proposition 3.4.2. If System is finitely cocomplete, then the relation ≤ is antisym-
metric.

Proof. If s ≤ s′ (resp. s′ ≤ s) then s′ (resp. s) is the least upper-bound of s and s′.
As the least upper-bound is unique by definition, we get s = s′ whenever s ≤ s′ and
s′ ≤ s.

If System is finitely cocomplete, then ≤ becomes a partial order. In this chap-
ter, we consider System to be a finitely cocomplete preordered set, unless
indicated otherwise. A finitely cocomplete preordered set always admits, by defi-
nition, a minimum element: the least upper-bound of the empty set.

Definition 3.4.3. Two systems s and s′ interact to yield their least upper-bound
s ∨ s′. More generally, a finite subset of systems S ⊆ System interacts to yield its
least upper-bound ∨S as a resulting system.

A collection of systems can only interact in a unique way and it is via the ∨
operator, to yield their least upper-bound. The binary operator ∨ is associative,
commutative and idempotent. The algebra 〈System,≤,∨〉 is usually termed a join-
semilattice.

Remark.

Conversely, every associative, commutative and idempotent binary operator on a set
induces a partial order on it. The development could have thus began with a join
semilattice. However, the order relation is seen to be more essential than the join
operation. This is especially true in the general level of the developed theory, through
the use of categories and functors. In the general case, the order relation is replaced
by sets of morphisms and joins are replaced by colimits. This direction will however
not be considered in this chapter.
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Remark.

The subsystem relation may admit various interpretations. The notion of intercon-
nection advocated by the behavioral approach to systems theory (see e.g., [PW98],
[Wil07], and Subsection 3.5.3) can be seen as a special case of that developed in this
section. Indeed, the notion of a subsystem in this section translates to a reverse in-
clusion of behaviors. Furthermore, interpreting s ≤ s′ as s being a partial description
or an approximation of s′ is reminiscent of ideas in [Sco71], [Sco72] and [SS71]. The
implication of such a connection will not however be investigated in this chapter.
Such a direction of research may however well be fruitful.

3.4.2 Interlude on capturing the generativity of a system.

Let us informally consider a generative grammar (see e.g. [Cho65] and related work
for a formal treatment) to be a collection of rules that dictates which sentences can
be formed. Every grammar then builds one language, and different grammars may
describe the same language. The grammars generating a same language are, however,
different: adding a rule to one grammar could yield a very different effect on the
language than adding it to another grammar. Similar effects occur in deduction (as
seen through contagion in Section 3.3) and in situations exhibiting cascade effects
or emergent phenomena. How do these grammars then gain this generativity? It is
definitely coming from their grammar rules. Yet, how do we capture it? We capture
it by destroying the rules, and studying how the grammar in full and the grammar
without the rules (amounting to only the language) behave when combined with other
grammars. It is the vivid discrepancy in interaction outcome between the presence
of the rules and their absence that encodes the generativity. To then capture cascade
effects resulting from the interaction of systems, we perform the following experiment.
On one end, we let the systems interact and observe the outcome of the interaction.
On another end, we destroy the potential a system has to produce effects let them
interact without it. These two ends, in the presence of cascade effects, will show a
discrepancy in interaction outcome. This discrepancy then encodes the phenomenon.
Studying the discrepancy amounts to studying the phenomenon.

3.4.3 Veils and generative effects.

Generative effects are seen to emerge when we decide to focus on a particular property
of a system. Such a focus is achieved by declaring a map Φ : System → P , termed
a veil, from the set of systems, to a set of observables, termed phenomes. Phenomes
can be properties, features or even subsystems of a particular system. They ought to
be thought of as simplified systems, and thus inherit an order-relation and a notion
of interaction. The space P is then, in turn, a cocomplete preordered set.

Definition 3.4.4. A veil on System is a pair (P,Φ) where 〈P,≤〉 is a finitely co-
complete preordered set, and Φ : System→ P is a map such that:

V.1. The map Φ is order-preserving, i.e., if s ≤ s′, then Φs ≤ Φs′.
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V.2. Every phenome admits a simplest system that explains it, i.e., the set {s : p ≤
Φs} has a (unique) minimum element for every p ∈ P .

As the map Φ always subsumes a codomain, we will often refer to Φ as the veil,
instead of the pair (P,Φ). However, viewing a veil as a pair (P,Φ) highlights an
important point. We may define different veils for a same space of systems, and
each veil would define the space of phenomes to be observed from the system. The
picture to keep in mind then is not that of fixing System and P and varying a veil
in between. It is of fixing System and varying (P,Φ) to yield different facets of the
systems.

The veil is intended to hide away parts of the system, and leave other parts,
the phenome, of the system bare and observable. The axiom V.1 indicates that
veiling a subsystem of a system may only yield a subphenome of the phenome of the
system. The axiom V.2 indicates that everything one observes can be completed in
a simplest way to something that extends under the veil. Generative effects occur
precisely when one fails to explain the happenings through the observable part of the
system. In those settings, the things concealed under the veil would have interacted
and produced observable phenomes.

Definition 3.4.5. A veil (P,Φ) is said to sustain generative effects if Φ(s ∨ s′) 6=
Φ(s) ∨ Φ(s′) for some s and s′.

Different veils may be defined for the same space System. Some will sustain gen-
erative effects and some will not. For instance, both veils (System, id) and ({∗}, ∗ :
System→ {∗}) do not sustain generative effects at all. The veil (System, id) , being
the identity map, hides nothing, while the veil ({∗}, ∗ : System→ {∗}) hides every-
thing. All that can be observed is explained by what is already observed. Thus the
standard intuition for systems exhibiting cascading phenomena, or contagion effects,
does not stem from a property of a system. It is rather the case that the situation
admits a highly suggestive phenome and a highly suggestive veil that sustains such
effects. Those effects are thus properties of the situation. Should we change the veil,
we may either increase those effects, diminish them or even make them completely
go away. Such interaction-related effects depend only on what we wish to observe.

The first property of the veil is somewhat self-explanatory. It ensures that the
map respects the relation among systems and is compatible with the preorders. The
second property, is less transparent, but gives the map a generative intuition present
in cascading phenomena. To explain the second property, we note that generative
effects can be seen to arise from two situations. We either conceal mechanisms in
the systems, or we forget characteristics of the systems. These two situations will be
expounded in the next two sections.

To make the space of phenomes P explicit in the chapter, as done with System,
we will often refer to P as Phenome. Such a reference is mainly done in the following
two sections. Similarly to System, we consider Phenome in this chapter to
be a finitely cocomplete preordered set, unless indicated otherwise.
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3.5 Concealing mechanisms.

The first source of generative effects consists of concealing mechanisms, or dynamics,
in a given system. Two systems, sharing a same phenome, may become identical once
the mechanisms are concealed. Their potential to produce effects in the phenome,
while interacting with other systems, may however be different. Indeed, concealed
mechanisms may play a role upon the interaction of systems.

To conceal (or destroy) mechanisms in a system, we require a map κ : System→
System satisfying:

K.1. κ(s) ≤ s for all s.

K.2. If s ≤ s′, then κ(s) ≤ κ(s′), for all s and s′.

K.3. κκ(s) = κ(s) for all s.

First, the map κ reduces a system to a subsystem of it. Second, the map κ preserves
the relation among systems. Third, the map κ does not discard anything from a
system whose mechanisms are already discarded. An operator satisfying K.1, K.2
and K.3 are usually termed kernel operators.

The operator κ can be intuitively expected to sustain generative effects whenever
κ(s ∨ s′) 6= κ(s) ∨ κ(s′) for some s and s′. In such a case, the mechanisms concealed
interact and produce more than what can only be produced by the phenomes. Put
differently, the discarded mechanisms have a role to play in the interaction of systems
with respect to our simplistic view, as phenomes, of the systems.

Let us define Phenome ⊆ System to be the set of fixed-points {s : κ(s) = s} of
κ. Then by K.3, we get κ(System) = Phenome. We may then define π : System→
Phenome such that π(s) = κ(s). Every kernel operator on System thus gives rise
to a surjective veil:

Proposition 3.5.1. The map π is surjective and order-preserving, and for every
p ∈ Phenome, the set {s : p ≤ π(s)} has a minimum element.

Proof. As π(p) = κ(p) = p for every p ∈ Phenome, the map π is surjective. The
map π is clearly order-preserving. Finally, the set {s : p ≤ π(s)} has p itself as a
minimal element.

Conversely, every surjective veil induces a kernel operator on System:

Proposition 3.5.2. If π : System → Phenome is a surjective order-preserving
map such that {s : p ≤ π(s)} has a minimum element for every p, then there exists
a unique injective order-preserving map i : Phenome→ System such that πi is the
identity map on Phenome, and iπ is a kernel operator on System.

Proof. For every p ∈ Phenome define i(p) to be the minimum element of {s : p ≤
π(s)}. As π is surjective, it follows that πi is the identity. The map i is then injective.
The map iπ is a kernel operator as iπ(s) = min{s′ : π(s) ≤ π(s′)}. The requirements
K.i can then be easily checked. Uniqueness of i follows from Proposition 3.7.4(i).
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Finally, whether or not generative effects are sustained by the veil π, depends on
the properties of the kernel operator κ.

Proposition 3.5.3. If s, s′ ∈ System, then:

π(s ∨System s′) 6= π(s) ∨Phenome π(s′) iff κ(s ∨System s′) 6= κ(s) ∨System κ(s′).

Proof. If s and s′ are fixed-points of κ, then their join in System coincides with their
join in Phenome. Indeed, if κ(s) = s and κ(s′) = s′, then κ(s ∨ s′) = s ∨ s′ by K.1
and K.2.

We next provide some example situations of concealing mechanisms.

3.5.1 Contagion and deduction systems.

We return to our contagion example. Recall that a system corresponds to a map
f : 2Σ → 2Σ satisfying:

A.1. S ⊆ f(S) for all S.

A.2. f(S) ⊆ f(S ′) if S ⊆ S ′ for all S and S ′.

A.3. ff(S) = f(S) for all S.

The poset System corresponds to the set of maps satisfying A.1, A.2 and A.3, ordered
by f ≤ g if f(S) ≤ g(S) for all S. Every pair f, g ∈ System admits a least
upper-bound f ∨ g ∈ System. The poset Phenome corresponds to 2Σ ordered by
inclusion. Two sets in 2Σ admit their set-union as the least upper-bound. We then
define π : System→ Phenome that sends f to its least fixed-point.

Proposition 3.5.4. The map π is a surjective veil.

Proof. The map π is surjective as it maps every system − 7→ − ∪ S into S. The
set {s : S ≤ π(s)} also has − 7→ − ∪ S as a minimum element. It is also clearly
order-preserving.

If we define i : Phenome→ System to be the map S 7→ − ∪ S, then iπ yields a
kernel operator. This kernel operator can be interpreted as destroying all the potential
a system has to infect additional nodes when interacting with other systems. The
kernel operator yields the simplest system (with respect to the dynamics) that can
account for the infected nodes at the end.

A dual perspective.

Let L denote the collection of subsets of 2Σ such that (i) 2Σ ∈ L and (ii) if A,B ∈ L
then A∩B ∈ L. The sets in L are sometimes called Moore families or closure systems.
The set L may then be ordered by reverse inclusion, to yield a lattice whose join is
set-intersection.
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Theorem 3.5.5. The map f 7→ {S : f(S) = S} defines an isomorphism between
〈System,≤,∨〉 and 〈L,⊇,∩〉

Proof. Such a fact is well known regarding closure operators. We refer the reader to
[Ada17c] for the details.

As such, every system can be uniquely identified with its set of fixed-points. In-
teraction of systems then consists of intersecting the fixed-points. As a consequence:

Corollary 3.5.6. π(f) is the intersection of all the fixed-points of f .

For more details on the properties of such systems, we refer the reader to [Ada17c].
This line of example first aimed at understanding the mathematical structure under-
lying models of diffusion of behavior commonly studied in the social sciences. The
setup there consists of a population of interacting agents. In a societal setting, the
agents may refer to individuals. The interaction of the agents affect their behaviors
or opinions. The goal is to understand the spread of a certain behavior among agents
given certain interaction patterns. Threshold models of behaviors (captured by M.0,
M.1, M.2 and M.3 in [Ada17c]) have appeared in the work of Granovetter [Gra78],
and more recently in [Mor00]. Such models are key models in the literature, and have
been later considered by computer scientists, see. e.g., [Kle07] for an overview.

3.5.2 Relations and projections.

A relation R between sets A and B is a subset of A×B. The set of relations between
A and B, ordered appropriately, admits two canonical veils.

First, define π : (2A×B,⊆) → (2A,⊆) to send R to {a : (a, b) ∈ R for all b}. The
map π is a surjective veil. Indeed, the set {R : S ⊆ πR} has S × B as a minimum
element. This veil sustains generative effects as generally:

π(R ∪R′) 6= π(R) ∪ π(R′)

Second, define π′ : (2A×B,⊇)→ (2A,⊇) that sendsR to {a : (a, b) ∈ R for some b}.
The map π′ is also a surjective veil. Indeed, the set {R : S ⊇ π′R} has S × B as
a minimum element with respect to ⊇. This veil also sustains generative effects as
generally:

π(R ∩R′) 6= π(R) ∩ π(R′)

The posets (2A×B,⊆) and (2A×B,⊇) of systems are dual to each other. The join
corresponds to set-union in the first, whereas it corresponds to set-intersection in the
second. The veil π′ can be further interpreted in systems-theoretic situations, through
the next example.

3.5.3 Subsystem behavior or concealing parameters.

In the behavioral approach to systems theory, a system is viewed as a pair of sets
(U,B). The set U—termed, the universum—depicts the set of all possible outcomes
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or trajectories. The set B is a subset of U—termed the behavior—that defines which
outcomes are deemed allowable by the dynamics of the system. The sets U and
B can be equipped with various mathematical structures to suit various need. We
will however, without loss of generality, only be concerned with sets, without any
additional structure. Interconnecting two systems (U,B) and (U,B′) yields the system
(U,B∩B′). Indeed, the interconnected systems keeps the trajectories that are deemed
possible by the separate systems. We refer the reader to [PW98] and [Wil07] for more
details on the behavioral approach.

In this subsection, we are interested in the behavior of a subsystem of a system
(U,B) as some changes are incurred into the greater system. A change in this setup
is depicted as another system (U, C). Incurring the change then consists of obtaining
the system (U,B∩C). To define a subsystem, we project U onto a smaller universum.
For instance, let us suppose U = S× S′ is a product space. Projecting B canonically
onto the universum S yields the behavior of the subsystem of (U,B) living in the
universum S.

We thus define System to be 2U, ordered by reverse inclusion. Two behaviors
B and B′ then admit a least upper-bound (with respect to the reverse inclusion)
corresponding to B ∩ B′. The space Phenome of phenomes is 2S, also ordered by
reverse inclusion. The canonical projection p : U → S then lifts to a map π :
System→ Phenome sending B to p(B).

Proposition 3.5.7. The map π is a surjective veil.

Proof. The map π is clearly surjective and order-preserving. The set {B : S ⊇ π(B)}
has p−1(S) as a minimum element with respect to ⊇.

Generative effects are typically sustained as:

π(B ∩ C) 6= π(B) ∩ π(C).

Although the changes in C are not directly applied onto the subsystem, they do affect
the subsystem through the other parts that are now concealed. The veil π induces a
map i : Phenome→ System sending set S to S × S′. The map iπ is then a kernel
operator that destroys all the potential for effects to occur due to restrictions of the
system in S′.

Concealing parameters.

For an additional interpretation of the example, let us suppose U = M × L. The
subsystem in play (whose universum corresponds to M) could represent manifest
variables that are observable, and the rest (whose universum corresponds L) could
represent latent variables or parameters that aid internally in the workings of the
system. As such, changes in the internal parameters of a system affect the manifest
variables.
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3.5.4 Concealing interdependence.

The previous example may be further enhanced to understand interdependence be-
tween components of an interconnected system. Let us again suppose that U = S×S′.
The decomposition yields two surjective maps p : U→ S and p′ : U→ S′. The maps
lift to separate veils π : System → 2S and π′ : System → 2S

′
sending a behavior B

to p(B) and p′(B′), respectively.
We then define Phenome to be 2S × 2S

′
. An element of Phenome is thus a set

S × S ′ with S ⊆ S and S ′ ⊆ S′. We finally define π : System → Phenome to be
p× p′ sending B to p(B)× p(B′).

Proposition 3.5.8. The map π is a surjective veil.

Proof. The map π is clearly surjective and order-preserving. The set {B : S × S ′ ⊇
p(B)× p′(B)} has p−1(S)∩ p′−1(S ′) (i.e., S×S ′) as a minimum element with respect
to ⊇.

And indeed, generative effects are typically sustained as:

π(B ∩ B′) 6= π(B) ∩ π(B)

The veil π induces a canonical inclusion map i : Phenome→ System. The map iπ
is a kernel operator that destroys any potential interdependence between the compo-
nents S and S′.

3.6 Forgetting characteristics.

The second source of generative effects consists of forgetting characteristics, or prop-
erties, from the given system. In such a setting, the space of phenomes tends to be
larger than that of systems. Indeed, phenomes then comprise the systems in concern
as well as systems non-necessarily satisfying the desired characteristic to be forgot-
ten. Generative effects emerge from the potential of the characteristic to enhance the
interconnected system.

We can forget characteristics of a system, by defining a bigger set Phenome
containing System. Every element of Phenome can be seen as a potential system
that is not forced to satisfy the forgotten characteristic. Every element of Phenome
can then be treated as a partial observation of a system. Such a partial observation
can then be completed into a system satisfying the desired forgotten characteristic.
To this end, we require a map c : Phenome→ Phenome such that:

c(p) ∈ System for all p

and:

C.1. p ≤ c(p) for all p.

C.2. If p ≤ p′, then c(p) ≤ c(p′), for all p and p′.
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C.3. cc(p) = c(p) for all p.

Notice the duality between the C.i in this section and the K.i in the previous ones.
First, the operator c sends a partial observation to one that contains it. Second, the
operator preserves the relation among the observation. Third, the operator does not
modify partial observations that are already systems. Again, an operator satisfying
C.1, C.2 and C.3 is usually termed a closure operator. The property C.i coincides
with property A.i in the contagion situation, whenever Phenome is 2Σ for some set
Σ.

The operator c can intuitively be expected to sustain generative effects whenever
c(p ∨ p′) 6= c(p) ∨ c(p′) for some p and p′. The forgotten characteristic then indeed
plays a role in the interaction of systems, to enhance the resulting combined system.

Given a closure operator c on Phenome, the set System is identified with the
set of fixed-points {p : c(p) = p}. We may then define a canonical inclusion ι :
System→ Phenome. Every closure operator gives rise to a veil:

Proposition 3.6.1. The map ι is injective and order-preserving, and for every p ∈
Phenome, the set {s : p ≤ ι(s)} has a minimum element.

Proof. The map ι is injective by definition. It is also clearly order-preserving. Finally,
the system c(p) is the minimal element of {s : p ≤ ι(s)}.

Conversely, every injective veil induces a closure operator on P :

Proposition 3.6.2. If ι : System → Phenome is an injective order-preserving
map such that {s : p ≤ ι(s)} has a minimum element for every p, then there exists
a unique surjective map q : Phenome → System such that qι is the identity on
System, and ιq is a closure operator on Phenome.

Proof. For every p ∈ Phenome, define q(p) to be the minimum element of {s :
p ≤ ι(s)}. The map qι is the identity map as qι(s) is the minimum element of
{s′ : ι(s) ≤ ι(s′)}, namely s as ι is injective. The map q is then surjective. The
map ιq is a closure operator as ιq(p) is the smallest element {ι(s) : p ≤ ι(s)}. The
requirements C.i can be easily checked. Uniqueness of q follows from Proposition
3.7.4(i).

Finally, whether or not generative effects are sustained by the veil ι depends on
the properties of the closure operator c.

Proposition 3.6.3. If s, s′ ∈ System, then:

ι(s ∨System s′) 6= ιs ∨Phenome ιs
′ iff c(ιs ∨Phenome ιs

′) 6= c(ιs) ∨Phenome c(ιs
′).

Proof. We have c(ιs) = ιs for every system s. We also have c(ιs ∨Phenome ιs
′) =

cι(s ∨System s′) for every s and s′.

We next provide some example situations of forgetting characteristics.
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3.6.1 Zooming into a deductive system.

We return to our contagion example. Rather than considering the collection of all
possible systems, and their interaction, we may zoom in on one particular system.
Indeed, a system in the contagion example is itself a closure operator over 2Σ, and
thus may pave the way to generative effects.

Let f : 2Σ → 2Σ be a map that satisfies A.1, A.2 and A.3. We define Phenome
to be 2Σ, the space of all configurations (of whether a node is infected or not) ordered
by inclusion. The space System will consist of all the configurations allowable by the
dynamics, namely the fixed-points {S : fS = S} ⊆ 2Σ. As seen in Proposition 3.3.8,
those fixed-points form a complete lattice, where every pair of admissible configuration
admits a join. We then define ι to be the canonical inclusion System→ Phenome,
and get:

Proposition 3.6.4. The map ι is an injective veil.

Proof. The statement follows from Proposition 3.6.1. Indeed, the map ι is injective
by definition. The system f(S) is the minimal element of {s : S ≤ ι(s)}.

Generative effects can sometimes be sustained, but not always. Whether or not
the effects emerge depends on the properties of the closure operator f .

No generative effects.

Consider the following sequence of nodes.

· · ·

A node becomes infected if a node pointing to it becomes infected. Once a node is
infected, it remains infected forever. This system defines a map f : 2Σ → 2Σ satisfying
A.1, A.2 and A.3, and induces a veil ι as described earlier.

Proposition 3.6.5. The veil does not sustain generative effects.

Proof. We have f(S ∪ S ′) = f(S) ∪ f(S ′) for every S and S ′ in 2Σ.

This system by itself does not exhibit any cascading phenomenon. There might
seem, however, to be an intuition for such a phenomenon only waiting to surface.
Nevertheless, when restricted to this particular system, the observable part prior to
interaction always determines the observable part after the interaction. The space of
systems is linearly ordered in this case, consisting of a maximal chain in 2Σ. To allow
the intuition to reappear, one needs to enlarge the space of systems. The intuition
of the phenomenon may be informally seen to come from the arcs of the directed
graph. The arcs, however, are built into the situation, and cannot be modified. If we
enlarge our space of systems to include some systems that may not have arcs among
nodes, then we can recover generative effects. Enlarging so moves us one step closer
to obtaining the whole class of maps satisfying A.1, A.2 and A.3 as a space of systems.
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3.6.2 Causality in systems.

One may reconsider whether causality ought to be a concept of grandiose importance
(see, e.g., [Rus12]). We view causality in this subsection as only intuitively expressing
the notion of transitivity. A situation of cause and effect will be considered as a
transitive relation → on a set Σ. The relation a→ b can be interpreted as “a causes
b”. Transitivity then abuts to: if a→ b and b→ c then b→ c. Cause-and-effect seems
to be inherent in cascade-like phenomena. They do appear, but only as a tangential
special case of generative effects. The intuition arises once we decide to forget the
property of transitivity from a relation.

We consider a system to be a transitive relation on Σ. The set System of transitive
relations can be ordered by inclusion, and every pair of systems admits a least upper-
bound in the poset. Two systems R and R′ interact by taking the transitive closure
R ∨ R′ of their union R ∪ R′. We can forget the transitivity property by embedding
System in a greater lattice Phenome consisting of all relations on Σ. Two relations
in Phenome interact by yielding their union. We define ι to be the canonical inclusion
System→ Phenome. Generative effects are sustained as, generally:

ι(R ∨R′) 6= ι(R) ∪ ι(R′).

The transitivity property plays a role in the interaction, leading to more causal re-
lations than what would typically be expected without it. This generativity in the
phenome is obtained by concealing characteristics in the systems. Indeed, ι induces
a closure operator on Σ that sends a phenome to its transitive closure.

Incorporating time.

Time can be trivially incorporated by defining Σ = E × T , where E is a set repre-
senting events, and T is an ordered set representing time. One can further impose
restrictions where (e, t) may cause (e′, t′) only if t ≤ t′. We will not dwell on devel-
oping such extensions in this chapter.

3.6.3 Algebraic constructions.

Closure operators abound in mathematics. Those trivially include linear spans, con-
vex hulls, and topological closure. As an example, let G be an abelian group and
suppose S is its underlying set. The space System will be the set Sub(G) of sub-
groups of G ordered by inclusion. The space Phenome will be the set 2S of subsets
of S, again, ordered by inclusion. Interaction in System is given by the linear span
+ operator, while the interaction in Phenome is given by set-union. We can then
define a closure operator on the set S, that sends subsets to the subgroup it gener-
ates. The closure operator then defines an injective veil ι : Sub(G)→ 2S. Generative
effects are sustained as, generally:

ι(H +H ′) 6= ι(H) ∪ ι(H ′)
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The group axioms interact so as to produce more elements than what is only observed.
The veil is actually forgetting the group structure of the system.

Forgetting might not create effects.

Suppose M is an R-module, and assume G is its underlying abelian group. The group
G is obtained by forgetting the multiplicative R-action of M . Let ι : Sub(M) →
Sub(G) be the map that sends a submodule of M to its underlying abelian group.
The map ι is an injective veil. Generative effects are however never sustained. Indeed,
for all submodules N and N ′, we have:

ι(N +N ′) = ι(N) + ι(N ′).

The ring action plays no role that affects the underlying abelian group of a module.

3.6.4 Universal grammar, languages and merge.

It is argued in [BC15]—and more generally through the minimalist program, see e.g.
[Cho93], [Cho95] and related work—that the human ability of language universally
arises from a single non-associative operation termed merge. For the illustrative
purpose of this subsection, let us define a set Σ of words. Let (free Σ,∧) denote the
free non-associative commutative algebra generated by the elements of Σ. We refer
to an element of free Σ as a sentence. Due to non-associativity, a sentence is then not
a linear concatenated string but rather a hierarchical object, a tree whose leaves are
elements of Σ. As expounded in [BC15], language is fundamentally hierarchical and
not associative, i.e., not concatenated (or not linear). When externalized, say through
speech, this sentence tends to be made concatenated. A grammar is then seen as a
subalgebra of (free Σ,∧). Such a subalgebra is thought to be generated by a set of
sentences. The subalgebra can be ordered by inclusion to yield a join-semilattice〈
Sub〈free Σ,∧〉,∨

〉
. The join g ∨ g′ of two subalgebras g and g′ is the subalgebra

generated by {s ∧ s′ : s ∈ g and s ∈ g′}.
These grammars possess an intuitive generative power, where the merge operator

∧ interacts with sentences to form new ones. To capture it, we forget such a property.
Formally, we define a(n injective) veil, that sends a grammar (a subalgebra) to its
underlying language (a set):

ι :
〈
Sub〈free Σ,∧〉,∨

〉
→ 〈2free Σ,∪〉

Generative effects are sustained as, in general, we have:

ι(g ∨ g′) 6= ι(g) ∪ ι(g′)

The discrepancy is caused by the effect of the merge operator. It is obtained by forget-
ting the characteristic that a grammar is equipped by such an operator, leaving only
the underlying language. It captures the generativity of the grammars considered.
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3.7 On arbitrary veils.

An arbitrary veil needs neither be surjective nor injective. Indeed, any combination
of concealing mechanisms and forgetting properties can lead to an adequate veil. In
general:

Proposition 3.7.1. The composition of two veils is a veil.

Proof. The property V.1 is preserved under composition. Let Φ1 : S → Q and
Φ2 : Q → P be veils. Then, by V.2, for every p ∈ P , the set {q : p ≤ Φ2(q)} has a
minimum element qmin and the set {s : qmin ≤ Φ1(s)} has a minimum element smin.
If p ≤ Φ2Φ1(s), then qmin ≤ Φ1(s), and smin ≤ s. The set {s : p ≤ Φ2Φ1(s)} then has
smin as a minimum element.

A converse also holds: every possible veil arises from a combination of concealing
mechanisms and forgetting characteristics.

Proposition 3.7.2. If Φ : System → Phenome is a veil, then Φ admits a factor-
ization Φ = ιπ such that π : System→ Q is a surjective veil, and ι : Q→ Phenome
is an injective veil.

Proof. Let Q be the image set {Φ(s) : s ∈ System}. The map Φ factors as ιπ
through Q with π surjective, ι injective and both order-preserving. As Φ is a veil, the
set {s : p ≤ ιπ(s)} admits a minimum element for every p. The set {π(s) : p ≤ ιπ(s)}
then admits a minimum element as π is order-preserving. As π is surjective, we get
that {q ∈ Q : p ≤ ιq} admits a minimum element for every p. Similarly, for every
q ∈ Q, the set {s : ι(q) ≤ ιπ(s)} admits a minimum element. As Q ⊆ Phenome, we
have ι(q) ≤ ι(q′) if, and only if q ≤ q′. The set {s : q ≤ π(s)} then admits a minimum
element.

The map π can be interpreted to conceal mechanisms in systems. The map ι can
then be interpreted as further forgetting characteristics from the partially concealed
systems. Every situation of generative effects arises from a combination of the two
cases. A veil then sustain generative effects whenever one of its factor components
sustains those effects.

Finally, a good way to recognize a veil is by checking whether it preserves meets
(i.e., greatest lower-bounds):

Proposition 3.7.3. If System and Phenome admit arbitrary meets, then: a map
Φ : System→ Phenome is a veil if, and only if, it is order-preserving and preserves
arbitrary meets.

Proof. Suppose Φ is order-preserving and preserves arbitrary meets. The set {s :
p ≤ Φ(s)} contains the maximum element of System (the meet of the empty set)
and is thus non-empty. The meet of all the elements in {s : p ≤ Φ(s)} lies in this
set and is its minimum element. Conversely, suppose Φ is a veil. Let S ⊆ System
be a subset. We have Φ(∧S) ≤ ∧Φ(S). Also, {s : ∧Φ(S) ≤ Φ(s)} has a minimum
element smin. Obviously smin ≤ s for every s ∈ S and thus smin ≤ ∧S. We then get
∧Φ(S) ≤ Φ(∧S).
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In particular, Φ sends the maximum element in System to the maximum element
of Phenome. Indeed, the greatest lower-bound for the empty set yields the maximum
element in Phenome. Finally, if System and Phenome only admit finite meets,
the veil would preserve them. Indeed, the converse direction of the proof above goes
through unchanged (by only considering S to be finite) for the finite case.

3.7.1 Properties and Galois connections.

The property V.2 is crucial as it allows us to define a freest (or simplest) reconstruction
of a system from the phenome. If Φ : System → Phenome is a veil, then define
F : Phenome→ System (for free) such that:

F : p 7→ min{s : p ≤ Φ(s)}

If Φ is invertible, then F would be the inverse of Φ. In the cases of interest, Φ is not
invertible, and F ought to be interpreted as the closest map that we could have as an
inverse. The map F is said to be the left adjoint of Φ, and the map Φ is said to be
the right adjoint of F . The pair (F,Φ) is termed a Galois connection. We provide
some properties related to Galois connections, and refer the reader to [Bir67] Ch. V,
[Eve44], [Ore44] and [EKMS93] for a thorough treatment. We will, however, not be
explicitly using those properties.

Proposition 3.7.4. Let Φ be a veil, and F be p 7→ min{s : p ≤ Φ(s)}, then:

i. For all p and s, we have F (p) ≤ s iff p ≤ Φ(s).

ii. The map FΦ is a kernel operator on System.

iii. The map ΦF is a closure operator on Phenome.

iv. The map Φ maps s to the maximum of {s : s ≤ F (p)}.
v. For all p and p′, we have F (p ∨ p′) = F (p) ∨ F (p′).

Proof. We refer the reader to [EKMS93] for proof of those statements, as well as other
related statements.

The map F is the unique map such that the (i.) holds. Furthermore, item (ii.)
recovers the kernel operator that conceals mechanisms in the system. Item (iii.)
recovers the closure operator that forgets characteristics of the systems.

One important consequence is:

Corollary 3.7.5. If Φ : (System,≤) → (Phenome,≤) is a veil, then its adjoint
F : (Phenome,≥)→ (System,≥) defines a veil on the dual preordered sets.

Examples of Galois connections abound, especially when it comes to free construc-
tion of algebraic objects. Most are mathematical examples, but when interpreted
appropriately yield us an intuition for cascade-like phenomena.
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3.8 Dynamical generative effects.

We introduce, in this section, the notion of a dynamical veil. Such veils can be used
to incorporate temporal information in the phenome. Aside from increasing modeling
expressivity, dynamical veils can be used to spread generative effects over (temporal)
approximations of systems. Such a spread may be used for a relative/successive
analysis of generative effects. This last direction will not be pursued in this chapter.

A main argument in this chapter is that generative effects enclose the intuitive
notion of cascade effects. The term cascade however gives an impression of an evolving
process. The notion of time then seems to be an essential component for cascades.
However generative effects do not depend intrinsically on time. Interconnection of
systems does not depend on time either. The goal of this interlude section is to aid in
reconciling this view. We thus introduce the notion of an I-dynamical veil. Whenever
generative effects are sustained by such a veil, we may think of them as dynamically
realized.

Definition 3.8.1. Let I be a preordered set. A veil Φ : S → P is said to be an
I-dynamical veil if P is isomorphic to P I (i.e., the preordered set of order-preserving
maps I → P ) for some preordered set P .

We often consider, in this section, sets I that are linearly ordered, i.e., where ≤
is antisymmetric for every i, j ∈ I, either i ≤ j or j ≤ i. Such linear orders may be
used to account for time, indexed by the elements of I.

The notion of a system and the means of interconnecting systems remain un-
changed. The phenome is then obtained by reading information from a system in-
dexed by I. The space of systems then needs to be rich in (e.g., temporal) structure
to support a meaningful I-dynamical veil.

3.8.1 Revisiting contagion, dynamically.

Let us reconsider the systems on contagion (or deduction) considered in Section 3.3
and studied in [Ada17c]. Let I be a preordered set, and let P be a complete lattice.
We define LPI to be the set of maps f : P I → P I satisfying:

A.1 If a ∈ P , then a ≤ f(a).

A.2 If a ≤ b, then f(a) ≤ f(b).

A.3 If a ∈ P , then f(f(a)) = f(a).

The set LPI may be naturally ordered to form a lattice. We may then define an
order-preserving map:

eval : LPI → P I

sending a system to its least fixed-point. The map eval preserves arbitrary meets,
and admits a left adjoint free : P I → LPI . The map eval may also be defined to act
on LP , the maps P → P satisfying A.1, A.2 and A.3, as done in Section 3.3 through
Φ.
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Syntax and interpretation.

We let Σ be a finite set of n elements. The set 2Σ denotes the set of subsets (or
powerset) or Σ. We set P to be 2Σ, and consider I to be the (canonically) preordered
set Z≥0 of non-negative integers.

A system f ∈ LPI may then be syntactically described by a mapN : Σ→ 22Σ×Z≥0
.

Indeed, every element i of Σ is attributed a collection of pairs (S, d), where S ⊆ Σ
and d ∈ Z≥0. The interpretation is as follows. Let X0, X1, X2, · · · be subsets of Σ
where X0 is the empty set. If S belongs to Xm, then i ∈ Xm+d. The rule of course
applies simultaneously to all pairs (S, d) for a given i, and for every element i of Σ.

We may interpret Xm to denote the elements that are active (infected or failed)
at time m. If the elements of S are already active (infected or failed) at time m (i.e.,
belong to Xm), then i will become active (infected or failed) after d time steps from
m, i.e. at time m+ d, belonging to Xm+d.

3.8.2 From dynamical veils to veils.

The phenome, in the case of an I-dynamical veil, is thus a collection of related frames,
or snapshots, taken from the system. In case I is a linearly ordered set, the frames
are successive snapshots of the system. We can easily focus on one of the frames,
forgetting others, and still recover a situation of generative effects.

Let I and P be preordered sets. We define πi : P I → P to be the canonical
projection onto the ith component of I. Applying πi on the phenome, a collection of
frames (or snapshot), amounts to only keeping the ith frame (or snapshot).

Proposition 3.8.2. If P is finitely complete (resp. finitely cocomplete) then for every
a, b ∈ P I, we have πi(a ∧ b) = πi(a) ∧ πi(b) (resp. πi(a ∨ b) = πi(a) ∨ πi(b)).

Proof. Joins and meets in P I are computed pointwise, if they exist in P .

The projection πi is often also a veil.

Proposition 3.8.3. If P admits a minimum element, then πi is a veil.

Proof. The map πi is clearly order-preserving. Let 0 be the minimum element of P .
For every p in P , the map q∗ sending j to p if i ≤ j and to 0 otherwise is the minimum
of the set {q : p ≤ πiq}.

This veil however does not sustain generative effects. This fact is a desirable
feature. Indeed, by composing a veil Φ : S → P I with πi we do not create additional
generative effects. We may then analyze Φ by separately analyzing the πi’s.

There is also a more interesting means of recovering a single snapshot, achieved
by aggregating everything. In such a case, we retrieve the asymptotic or limiting
behavior. To this end, we define the map:

colim : P I → P

that sends a ∈ P I to ∨iai.
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The map colim is not always a veil. As an example, suppose I = Z≥0 (canonically
preordered) and P = {0, 1} with 0 ≤ 1. Indeed, the set {a ∈ {0, 1}Z : 1 ≤ colim a}
does not admit a minimum element. Regardless, the map colim is well behaved
towards existing generative effects. Indeed:

Proposition 3.8.4. The map colim preserves arbitrary joins, whenever they exist.

Proof. Trivially (∨iai) ∨ (∨ibi) = ∨i(ai ∨ bi) being the least upper-bound of {ai} ∪
{bi}.

We can thus aggregate phenomes, in the case of the dynamical contagion example
over 2Σ, without creating new generative effects. Let I be a preordered set and P
be a complete lattice. Recall that LPI (resp. LP ) denotes the set of maps P I → P I

(resp. P → P ) satisfying A.1, A.2 and A,3.

Proposition 3.8.5. For a ∈ P , let aI denote the constant map in I → P with image
a. If f ∈ LPI , then the map agg f : P → P :

agg f : a 7→ colim f(aI)

belongs to LP .

Proof. (A.1) Since aI ≤ f(aI) by A.1 of LPI , then colim aI ≤ colim f(aI) as colim
is order-preserving. (A.2) If a ≤ b, then aI ≤ bI . It then follows that f(aI) ≤ f(bI) by
A.2 of LPI , and thus colim f(aI) ≤ colim f(bI). (A.3) Finally, colim f(colim f(aI))I =
colim(colim f(aI))I = colim f(aI) as f satisfies A.3 of LPI .

In the case where P = 2Σ and I = Z≥0, the map agg can be interpreted to send
a system with syntactic description N to one where all pairs (S, d) for element i are
replaced by (S, 0). In general, we recover the following commutative situation:

Proposition 3.8.6. If I is a preordered set and P is a complete lattice, then the
diagram:

LPI
eval−−−→ P I

agg

y ycolim

LP
eval−−−→ P

commutes, i.e. colim ◦ eval = eval ◦ agg.

Proof. If 0 denote the minimum element of P , then eval(agg f) = (agg f)(0) =
colim f(0I) = eval f .

We have been projecting the phenome in P I to a phenome in P , while making sure
that joins are preserved. Join-preservation then does not create new generative effects.
The projection however will often remove some of the original generative effects. One
ought to then think of such procedures as focusing on a particular refined aspect of
the dynamical phenome.
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3.8.3 From veils to dynamical veils.

Any veil is trivially a dynamical veil over the one-point poset. We can however
obtain a veil that is non-trivially dynamical by considering the systems to be given
by a filtration.

Definition 3.8.7. Let I be a preordered set. An I-filtration of a system s in a
preordered set S is an order-preserving map F : I → S such that colimF = s.

An I-filtration then provides a successive approximation for the system s. Every
veil Φ : S → P induces a canonical veil ΦI : SI → PI . Defining a system by an
I-filtrations can be seen to equip it with adequate temporal information.

In the behavioral approach.

Through the lens of the behavioral approach to systems theory, such temporal infor-
mation can be seen as a further refinement of constraints. Let I be a linearly ordered
set of n elements, and consider the set U = U1×· · ·×Un. For every i, let pi : U→ Ui
be the canonical projection. For every Willems’ system (U,B), the sets:

FiB = π−1
i πiB

then define an I-filtration of B. Every set Ui can be seen to represent a variable, an
I-filtration can then be seen to successively grow the constraints to connect different
variables.

3.8.4 Why care about dynamical veils?

Dynamical veils can be used to incorporate time in generative effects. There are,
however, various other ways of incorporating time in generative effects, such as having
the phenome contain timed trajectories. However, going from a veil to a dynamical
veil, by resolving a system into an I-filtration, may allow us to spread generative
effects. The eventual goal fully developed in [Ada17g] and exemplified in [Ada17a],
[Ada17e] and [Ada17d] is to develop cohomology theories for understanding such
effects. These dynamical veils may allow us to develop relative theories. It other
terms, it may allows to ask (and answer) the following informal question: suppose
we have observed a cascade, and its effects, up to time T , what new effects resulting
from the cascade will appear at time T + m? This direction will, however, not be
further pursued in the chapter.

3.9 Factorization and lifts.

The second condition V.2 of a veil may seem to be restrictive. Some situations may
be formalized in a way that does not yield such a condition. We show how one can
recover a veil from non-veil-like situations.
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3.9.1 Factoring and retrieving the intuition.

Let P and Q be cocomplete preordered sets (admitting arbitrary joins) and let f :
P → Q be an order-preserving map. It can be the case that P and Q contain
elements that make property V.2 fail for f , but that are irrelevant to any situation of
generative effects possibly suggested by f . There exists a systematic way to get rid
of such elements, and potentially retrieve a hidden veil.

On the P side.

Define a binary relation ∼ on P such that p ∼ q if, and only if, f(p ∨ x) = f(q ∨ x)
for all x ∈ P .

Proposition 3.9.1. The relation ∼ is an equivalence relation.

Proof. The relation can be trivially checked to be reflexive, symmetric and transitive.

The relation ∼ is further compatible with the structure of P when viewed as a
join semilattice.

Proposition 3.9.2. The relation ∼ is a congruence relation on (P,∨), i.e., if a ∼ b
and a′ ∼ b′ then a ∨ a′ ∼ b ∨ b′.

Proof. Suppose a ∼ b and a′ ∼ b′. For every x ∈ P , we have:

f(a ∨ a′ ∨ x) = f(b ∨ (a′ ∨ x)) = f(a′ ∨ (b ∨ x)) = f(b′ ∨ b ∨ x).

The equalities follow from commutativity and associativity of ∨.

To get a better understanding of ∼ we note:

Proposition 3.9.3. If a ≤ c and a ∼ c, then: for every b where a ≤ b ≤ c, we have
b ∼ c.

Proof. If a ≤ b ≤ c, then for every x, we have f(a ∨ x) ≤ f(b ∨ x) ≤ f(c ∨ x).

Proposition 3.9.4. If a ∼ b, then b ∼ a ∨ b.

Proof. Indeed, we have that a ∼ b and b ∼ b. The result then follows by congruence.
Or directly, we have f(a ∨ b ∨ x) = f(b ∨ b ∨ x) = f(b ∨ x)

In particular, a maximal element (if it exists) of a congruence class of ∼ is the
(unique) maximum element of the class. The congruence classes induced by ∼ define
a partition of P . These congruence classes inherit an order to yield a join-semilattice
P∼. The order relation ≤ on P∼ is defined as C ≤ C ′ if, and only if, there is an a ∈ C
and a ∈ C ′ such that a ≤ a′. Equivalently, the join operation is defined as: if a and
a′ are in the classes C and C ′, then C ∨ C ′ is the congruence class containing a ∨ a′.
The join operation is well defined as ∼ is a congruence relation. Let π : P → P∼
be the order-preserving surjective map that sends an element of P to its congruence
class.
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Proposition 3.9.5. The map π commutes with finite joins.

Proof. The statement follows by construction of P∼, namely from the fact that ∼ is
a congruence relation.

On the Q side.

Define Q̂ to be sub-joinsemilattice of Q generated by f(P ). Namely we define Q̂ to be
the elements of f(P ) along with all possible finite joins ordered by the partial order
of Q. Let ι : Q̂→ Q be the canonical order-preserving injective map.

Proposition 3.9.6. The map ι commutes with finite joins.

Proof. The statement immediately follows from the construction of Q̂.

Combined.

The maps π and ι may be used to factorize f .

Proposition 3.9.7. There exists a unique map g : P∼ → Q̂ such that the diagram:

P∼
g−−−→ Q̂

π

x yι
P

f−−−→ Q

commutes, i.e., f = πgι.

Proof. For every class C in P∼, let αC denote a fixed element of C. Define g to be
C 7→ f(αC). The diagram commutes, and the map g is unique as ι is injective and π
is surjective.

We then get:

Corollary 3.9.8. For all a, b ∈ P , we have:

f(a ∨ b) 6= f(a) ∨ f(b) iff g(πa ∨P∼ πb) 6= g(πa) ∨Q̂ g(πb).

Furthermore:

Proposition 3.9.9. If f : P → Q is injective, then (i) π is the identity and, (ii) g
is a veil if, and only if, for every p and p′, we have:

if f(p) ≤ f(p′), then p ≤ p′.

Proof. Let f be injective. Then p ∼ p′ implies p = p′, and π is thus the identity.
Suppose that g is a veil. If f(p) ≤ f(p′), then g(p) ≤ g(p′). The greatest lower-

bound of g(p) and g(p′) then exists and is g(p) ∧ g(p′) = g(p). If we consider the set
T = {t : g(p) ∧ g(p′) ≤ g(t)}, then it follows that p, p′ ∈ T and p is the (unique)
minimum of T . We then have p ≤ p′.
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Conversely, suppose that f(p) ≤ f(p′) implies p ≤ p′ and consider the set {p : q ≤
g(p)} for q ∈ Q̂. If q ∈ f(P ) then, as f is injective, the set {p : q ≤ g(p)} admits a
unique minimum, the preimage of q with respect to f . If q /∈ f(P ), then q = ∨if(pi)
is a finite join of elements in f(P ). We also have:

{p : ∨if(pi) ≤ g(p)} = ∩i{p : f(pi) ≤ g(p)}
= ∩i{p : f(pi) ≤ f(p)}
= ∩i{p : pi ≤ p}
= {p : ∨ipi ≤ p}

This set has ∨ipi as a minimum element.

Suppose that P is finite. Then, every congruence class C in ∼ admits a maximum
element, the join of all its elements. We define c : P → P to be the map that sends
an element p to the maximum element of its congruence class π(p). Notice that c is
a closure operator on P .

Proposition 3.9.10. Let P be finite. If f : P → Q is surjective, then (i) ι is
the identity, and (ii) g is a veil if, and only if, f(∧ipi) = ∧if(pi) for every (finite)
collection {pi} ⊆ c(P ).

Proof. If f is surjective, then Q̂ = f(P ) = Q. The rest follows from Proposition
3.7.3. Indeed, c(P ) is isomorphic to P∼ and g is the restriction of f to c(P ).

The finiteness condition can be alleviated through adequate technical care.

3.9.2 All order-preserving maps can be lifted to veils.

A factorization, as done in the previous section, need not always yield a veil. We will
often have a map that is not necessarily a veil, but would still like to interpret the
situation as one exhibiting generative effects. If we have a map that does not satisfy
V.2, then some phenome will not have a minimum system that explains it. It will
have multiple minimal systems explaining it. However if we can treat the multitude
of systems as one ambiguous system, we can recover uniqueness.

In this section, we show that we can always lift an arbitrary order-preserving
map to a veil between a lifted space of systems and a lifted space of phenomes. The
relevant properties, namely whether or not it sustains generative effects, are preserved
in the lift. We do lose something by this completion, as now the lifted space contains
objects that we cannot necessarily interpret as systems. That need not be a nuisance
as interaction of the interpretable systems is preserved. The generality of the lift can
however restrict our ability to find tight structures for the situation.

Definition 3.9.11. A filter (or upper set) J of a preordered set P is a subset of P
such that: if p ≤ p′ and p ∈ J , then p′ ∈ J .

In particular:
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Proposition 3.9.12. If P is finitely cocomplete, then: J is a filter of P if, and only
if, p ∨ J ⊆ J for all p ∈ P .

Proof. If J is a filter of P , then for every j ∈ J , we have j ≤ p∨ j and thus p∨ j ∈ J .
Conversely, if p ≤ p′ and p ∈ J , then p′ = p′ ∨ p ∈ p′ ∨ J ⊆ J .

We denote by J (P ) the preordered set of filters of P . The set (J (P ),⊇) ordered
by reverse inclusion is necessarily a lattice, that admits arbitrary, joins (through set-
intersection ∩) and meets (through set-union ∪). In particular, J (P ) is a distributive
lattice as ∩ and ∪ distribute over one another.

If p ∈ P , we define 〈p〉 to be the filter generated by p. Namely: 〈p〉 = {p∨ a : a ∈
P}. The element p ∈ P is then represented by 〈p〉 in J (P ). Indeed:

Proposition 3.9.13. If P is finitely cocomplete, then: for all p, p′ ∈ P , we have
〈p ∨ p′〉 = 〈p〉 ∩ 〈p′〉.
Proof. If a ∈ 〈p〉 ∩ 〈p′〉, then p ∨ p′ ≤ a, and so a ∈ 〈p ∨ p′〉. Conversely, we trivially
have 〈p ∨ p′〉 ⊆ 〈p〉 ∩ 〈p′〉.

Note that lifting to J (P ) does not preserve meets. Meets however are not essential
throughout the theory, they just happen to be a convenience.

Let f : P → Q be an order-preserving map. If I is a filter, then f(I) does not
have to be a filter. We define J (f) : J (P )→ J (Q) to be the map that sends a filter
I to the filter closure 〈f(I)〉 of f(I).

Proposition 3.9.14. We have J (f)〈p〉 = 〈f(p)〉 for all p.

Proof. The set f〈p〉 contains f(p) as a minimum element.

Furthermore:

Proposition 3.9.15. The map J (f) : 〈J (P ),⊇〉 → 〈J (Q),⊇〉 is a veil.

Proof. The map J (f) is clearly order-preserving. Furthermore, the set {I : J ⊇
J (f)(I)} has

〈
{p : J ⊇ 〈fp〉}

〉
as a minimum element with respect to ⊇.

Finally, the potential for generative effects is preserved by the lift.

Proposition 3.9.16. If P and Q are finitely cocomplete, then:

f(p ∨ p′) 6= f(p) ∨ f(p′) iff J (f)(〈p〉 ∩ 〈p′〉) 6= J (f)(〈p〉) ∩ J (f)(〈p′〉).

Proof. We have f(p∨p′) 6= f(p)∨f(p′) if, and only if, 〈f(p∨p′)〉 6= 〈f(p)∨f(p′)〉. By
Proposition 3.9.13, we get 〈f(p) ∨ f(p′)〉 = 〈f(p)〉 ∩ 〈f(p′)〉 and 〈p ∨ p′〉 = 〈p〉 ∩ 〈p′〉.
The rest then follows by Proposition 3.9.14.

The J operator however disregards any information on whether or not f already
satisfies V.2. For instance, if f already satisfies V.2 we should expect that we ought
not need a lot of elements to add in the lifted space while completing the space, if
anything at all. Such controlled lifts can be achieved via the use of Grothendieck
topologies on posets. Such a direction will not be pursued in this chapter. It is
however an important direction to develop: it provides a solid path towards toposes
and the theory of sheaves (see e.g. [AGV72]).
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Remark.

Notice that if the spaces P and Q were not cocomplete, the lift will create joins in
the lattice of filters.

3.10 Concluding remarks.

The development of generative effects has been carried out in the restrictive case of
preordered sets. We can achieve greater generality, and higher expressiveness, by
having our spaces of systems and phenomes be categories. We refer the reader to
[Ada17g] for the details.

In the general level, the presence of generative effects can be linked to a loss
of exactness. This loss can be recovered via methods in homological algebra. We
can extract algebraic objects that encode a system’s potential to produce generative
effects. We can then use those objects to characterize the phenomenon, and link the
behavior of the interconnected system to that of its separate systems. This direction
is carried out in the coming chapters.
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Chapter 4

Towards an algebra for cascade
effects

Abstract

We introduce a new class of (dynamical) systems that inherently capture cascading
effects (viewed as consequential effects) and are naturally amenable to combinations.
We develop an axiomatic general theory around those systems, and guide the endeavor
towards an understanding of cascading failure. The theory evolves as an interplay
of lattices and fixed points, and its results may be instantiated to commonly studied
models of cascade effects.

We characterize the systems through their fixed points, and equip them with two
operators. We uncover properties of the operators, and express global systems through
combinations of local systems. We enhance the theory with a notion of failure, and
understand the class of shocks inducing a system to failure. We develop a notion
of µ-rank to capture the energy of a system, and understand the minimal amount
of effort required to fail a system, termed resilience. We deduce a dual notion of
fragility and show that the combination of systems sets a limit on the amount of
fragility inherited.
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4.1 Introduction

Cascade effects refer to situations where the expected behavior governing a certain
system appears to be enhanced as this component is embedded into a greater sys-
tem. The effects of change in a subsystem may pass through interconnections and
enforce an indirect change on the state of any remote subsystem. As such effects
are pervasive—appearing in various scenarios of ecological systems, communication
infrastructures, financial networks, power grids and societal networks—there is an
interest (and rather a need) to understand them. Models are continually proposed
to capture instances of cascading behavior, yet the universal properties of this phe-
nomenon remain untouched. Our goal is to capture some essence of cascade effects,
and develop an axiomatic theory around it.

A reflection on such a phenomenon reveals two informal aspects of it. The first as-
pect uncovers a notion of consequence relation that seemingly drives the phenomenon.
Capturing chains of events seems to be inescapably necessary. The second aspect
projects cascade effects onto a theory of subsystems, combinations and interaction.
We should not expect any cascading behavior to occur in isolation.

The line of research will be pursued within the context of systemic failure, and set
along a guiding informal question. When handed a system of interlinked subsystems,
when would a small perturbation in some subsystems induce the system to failure?
The phenomenon of cascade effects (envisioned in this chapter) restricts the possible
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systems to those satisfying posed axioms. The analysis of cascade effects shall be
perceived through an analysis on these systems.

We introduce a new class of (dynamical) systems that inherently capture cascading
effects (viewed as consequential effects) and are naturally amenable to combinations.
We develop a general theory around those systems, and guide the endeavor towards
an understanding of cascading failure. The theory evolves as an interplay of lattices
and fixed points, and its results may be instantiated to commonly studied models of
cascade effects.

Our systems

The systems, in this introduction, will be motivated through an elementary example.
This example is labeled M.0 and further referred to throughout the chapter.

M.0. Let G(V,A) be a digraph, and define N(S) ⊆ V to be the set of nodes j with
(i, j) ∈ A and i ∈ S. A vertex is of one of two colors, either black or white. The
vertices are initially colored, and X0 denotes the set of black colored nodes. The
system evolves through discrete time to yield X1, X2, · · · sets of black colored nodes.
Node j is colored black at step m + 1 if any of its neighbors i with j ∈ N(i) is black
at step m. Once a node is black it remains black forever.

Our systems will consist of a collection of states along with internal dynamics.
The collection of states is a finite set P . The dynamics dictate the evolution of the
system through the states and are governed by a class of maps P → P . The state
space in M.0 is the set 2V where each S ⊆ V identifies a subset of black colored nodes;
the dynamics are dictated by g : X 7→ X ∪N(X) as Xm+1 = gXm.

We intuitively consider some states to be worse or less desirable than others. The
color black may be undesirable in M.0, representing a failed state of a node. State S
is then considered to be worse than state T if it includes T . We formalize this notion
by equipping P with a partial order ≤. The order is only partial as not every pair of
states may be comparable. It is natural to read a ≤ b in this chapter as b is a worse
(or less desirable) state than a. The state space 2V in M.0 is ordered by set inclusion
⊆.

We expect two properties from the dynamics driving the systems. We require the
dynamics to be progressive. The system may only evolve to a state considered less
desirable than its initial state. We also require undesirability to be preserved during
an evolution. The less desirable the initial state of a system is, the less desirable
the final state (that the system evolves to) will be. We force each map f : P → P
governing the dynamics to satisfy two axioms:

A.1 If a ∈ P , then a ≤ fa.

A.2 If a, b ∈ P and a ≤ b, then fa ≤ fb.

The map X 7→ X ∪ N(X) in M.0 satisfies both A.1 and A.2 as S ⊆ S ∪ N(S), and
S ∪N(S) ⊆ S ′ ∪N(S ′) if S ⊆ S ′.
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Our interest lies in the limiting outcome of the dynamics, and the understanding
we wish to develop may be solely based on the asymptotic behavior of the system. In
M.0, we are interested in the set Xm for m large enough as a function of X0. As V
is finite, it follows that Xm = X|V | for m ≥ |V |. We are thus interested in the map
g|V | : X0 7→ X|V |. More generally, as iterative composition of a map satisfying A.1
and A.2 eventually yields idempotent maps, we equip the self-maps f on P with a
third axiom:

A.3 If a ∈ P , then ffa = fa.

Our class of interest is the (self-)maps (on P ) satisfying the axioms A.1, A.2 and A.3.
Each system will be identified with one such map. The system generated from an
instance of M.0 corresponds to the map X0 7→ X|V |.

The axioms A.1, A.2 and A.3 naturally permeate a number of areas of mathe-
matics and logic. Within metamathematics and (universal) logic, Tarski introduced
these three axioms (along with supplementary axioms) and launched his theory of
consequence operator (see [Tar36] and [Tar56]). He aimed to provide a general char-
acterization of the notion of deduction. As such, if S represents a set of statements
taken to be true (i.e. premises), and Cn(S) denotes the set of statements that can be
deduced to be true from S, then Cn (as an operator) obeys A.1, A.2 and A.3. Many
familiar maps also adhere to the axioms. As examples, we may consider the function
that maps (i) a subset of a topological space to its topological closure, (ii) a subset
of a vector space to its linear span, (iii) a subset of an algebra (e.g. group) to the
subalgebra (e.g. subgroup) it generates, (iv) a subset of a Euclidean n-space to its
convex hull. Such functions may be referred to as closure operators (see e.g. [Bir36],
[Bir67], [Ore43] and [War42]), and are typically objects of study in universal algebra.

Goal and Contribution of the Chapter

This chapter has three goals. The first is to introduce and motivate the class of
systems. The second is to present some properties of the systems, and develop pre-
liminary tools for the analysis. The third is to construct a setup for cascading failure,
and illustrate initial insight into the setup. The chapter will not deliver an exhaustive
exposition. It will introduce the concepts and augment them with enough results to
allow further development.

We illustrate the contribution through M.0. We define f and g to be the systems
derived from two instances (V,A) and (V,A′) of M.0.

We establish that our systems are uniquely identified with their set of fixed points.
We can reconstruct f knowing only the sets S containing N(S) (i.e. the fixed points
of f) with no further information on (V,A). We further provide a complete char-
acterization of the systems through the fixed points. The characterization yields a
remarkable conceptual and analytical simplification in the study.

We equip the systems with a lattice structure, uncover operators (+ and ·) and
express complex systems through formulas built from simpler systems. The + op-
erator combines the effect of systems, possibly derived from different models. The
system f + g, as an example, is derived from (V,A ∪ A′). The · operator projects
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systems onto each other allowing, for instance, the recovery of local evolution rule.
We fundamentally aim to extract properties of f + g and f · g through properties of
f and g separately. We show that + and · lend themselve to well behaved operations
when systems are represented through their fixed-points.

We realize the systems as interlinked components and formalize a notion of cascade
effects. Nodes in V are identified with maps e1, · · · , e|V |. The system f ·ei then defines
the evolution of the color of node i as a function of the system state, and is identified
with the set of nodes that reach i in (V,A).

We draw a connection between shocks and systems, and enhance the theory with
a notion of failure. We show that minimal shocks (that fail a system h) exhibit a
unique property that uncovers complement subsystems in h, termed weaknesses. A
system is shown to be injectively decomposed into its weaknesses, and any weakness
in h+ h′ cannot result but from the combination of weaknesses in h and h′.

We introduce a notion of µ-rank of a system—akin to the (analytic) notion of
a norm as used to capture the energy of a system—and show that such a notion is
unique should it adhere to natural principles. The µ-rank is tied to the number of
connected components in (V,A) when A is symmetric.

We finally set to understand the minimal amount of effort required to fail a system,
termed resilience. Weaknesses reveal a dual (equivalent) quantity, termed fragility,
and further puts resilience and µ-rank on comparable grounds. The fragility is tied
to the size of the largest connected component in (V,A) when A is symmetric. It is
thus possible to formally define high ranked systems that are not necessarily fragile.
The combination of systems sets a limit on the amount of fragility the new system
inherits. Combining two subsystems cannot form a fragile system, unless one of the
subsystems is initially fragile.

Outline of the chapter.

Section 2 presents mathematical preliminaries. We characterize the systems in Section
3, and equip them with the operators in Section 4. We discuss component realization
in Section 5, and derive properties of the systems lattice in Section 6. We discuss
cascade effects in Section 7, and provide connections to formal methods in Section
8. We consider cascading failure and resilience in Section 9, and conclude with some
remarks in Section 10.

4.2 Mathematical preliminaries.

A partially ordered set or poset (P,≤) is a set P equipped with a (binary) relation
≤ that is reflexive, antisymmetric and transitive. The element b is said to cover a
denoted by a ≺ b if a ≤ b, a 6= b and there is no c distinct from a and b such that
a ≤ c and c ≤ b. A poset P is graded if, and only if, it admits a rank function ρ
such that ρ(a) = 0 if a is minimal and ρ(a′) = ρ(a) + 1 if a ≺ a′. The poset (P,≤)
is said to be a lattice if every pair of elements admits a greatest lower bound (meet)
and a least upper bound (join) in P . We define the operators ∧ and ∨ that sends a
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pair to their meet and join respectively. The structures (P,≤) and (P,∧,∨) are then
isomorphic. A lattice is distributive if, and only if, (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for
all a, b and c. The pair (a, b) is said to be a modular pair if c ∨ (a ∧ b) = (c ∨ a) ∧ b
whenever c ≤ b. A lattice is modular if all pairs are modular pairs. Finally, a finite
lattice is (upper) semimodular if, and only if, a ∨ b covers both a and b, whenever a
and b cover a ∧ b.

Notation

We denote f(g(a)) by fga, the composite ff by f 2, and the inverse map of f by f−1.
We also denote f(i) by fi when convenient.

4.3 The Class of systems.

The state space is taken to be a finite lattice (P,≤). We consider in this chapter
only posets (P,≤) that are lattices, as opposed to arbitrary posets. It is natural to
read a ≤ b in this chapter as b is a worse (or less desirable) state than a. The meet
(glb) and join (lub) of a and b will be denoted by a ∧ b and a ∨ b respectively. A
minimum and maximum element exist in P (by finiteness) and will be denoted by p̌
and p̂ respectively.

A system is taken to be a map f : P → P satisfying:

A.1 If a ∈ P , then a ≤ fa.

A.2 If a, b ∈ P and a ≤ b, then fa ≤ fb.

A.3 If a ∈ P , then ffa = fa.

The set of such maps is denoted by LP or simply by L when P is irrelevant to the
context. This set is necessarily finite as P is finite.

Note on finiteness.

Finiteness is not essential to the development in the chapter; completeness can be
used to replace finiteness when needed. We restrict the exposition in this chapter to
finite cases to ease non-necessary details. As every finite lattice is complete, we will
make no mention of completeness throughout.

4.3.1 Models and examples.

The axioms A.1 and A.2 hold for typical “models” adopted for cascade effects. We
present three models (in addition to M.0 provided in Section 1) supported on the
Boolean lattice, two of which—M.1 and M.3—are standard examples (see [Gra78],
[Kle07] and [Mor00]). It can be helpful to identify a set 2S with the set of all black
and white colorings on the objects of S. A subset of S then denotes the objects
colored black. The model M.1 generalizes M.0 by assigning thresholds to nodes in the
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graph. Node i is colored black when the number of neighbors colored black surpasses
its threshold. The model M.2 is noncomparable to M.0 and M.1, and the model M.3
generalizes all of M.0, M.1 and M.2.

M.1. Given a digraph over a set S or equivalently a map N : S → 2S, a map
k : S → N and a subset X0 of S, let X1, X2, · · · be subsets of S recursively defined
such that i ∈ Xm+1 if, and only if, either |Ni ∩Xm| ≥ ki or i ∈ Xm.

M.2. Given a collection C ⊆ 2S for some set S, a map k : C → N and a subset X0 of
S, let X1, X2, · · · be subsets of S recursively defined such that i ∈ Xm+1 if, and only
if, either there is a C ∈ C containing i such that |C ∩Xm| ≥ kc or i ∈ Xm.

M.3. Given a set S, a collection of monotone maps φi (one for each i ∈ S) from
2S into {0, 1} (with 0 < 1) and a subset X0 of S, let X1, X2, · · · be subsets of S
recursively defined such that i ∈ Xm+1 if, and only if, either φi(Xm) = 1 or i ∈ Xm.

We necessarily haveX|S| = X|S|+1 in the three cases above, and the mapX0 7→ X|S|
is then in L2S . The dynamics depicted above may be captured in a more general form.

M.4. Given a finite lattice L, an order-preserving map h : L → L, and x0 ∈ L, let
x1, x2, · · · ∈ L be recursively defined such that xm+1 = xm ∨ h(xm).

We have x|L| = x|L|+1 and the map x0 7→ x|L| is in LL.
The axioms allow greater variability if the state space is modified or augmented

accordingly. Nevertheless, this chapter is only concerned with systems of the above
form.

Note on realization.

Modifications of instances of M.i (e.g. altering values of k in M.1) may not alter the
system function. As the interest lies in understanding universal properties of final
evolution states, the analysis performed should be invariant under such modifications.
However, analyzing the systems directly through their form (as specified through M.0,
M.1, M.2 and M.3) is bound to rely heavily on the representation used. Introducing
the axioms and formalism enables an understanding of systems that is independent of
their representation. It is then a separate question as to whether or not a system may
be realized through some form, or whether or not restrictions on form translate into
interesting properties on systems. Not all systems supported on the Boolean lattice
can be realized through the form M.0, M.1 or M.2. However, every system in L2S

may be realized through the form M.3. Indeed, if f ∈ L2S , then for every i ∈ S define
φi : 2S → {0, 1} where φi(a) = 1 if, and only if, i ∈ f(a). The map φi is monotone as
f satisfies A.2. Realization is further briefly discussed in Section 4.5.

4.3.2 Context, interpretation and more examples.

A more realistic interpretation of the models M.i comes from a more realistic in-
terpretation of the state space. This work began as an endeavor to understand the
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mathematical structure underlying models of diffusion of behavior commonly studied
in the social sciences. The setup there consists of a population of interacting agents.
In a societal setting, the agents may refer to individuals. The interaction of the
agents affect their behaviors or opinions. The goal is to understand the spread of a
certain behavior among agents given certain interaction patterns. Threshold models
of behaviors (captured by M.0, M.1, M.2 and M.3) have appeared in the work of Gra-
novetter [Gra78], and more recently in [Mor00]. Such models are key models in the
literature, and have been later considered by computer scientists, see. e.g., [Kle07]
for an overview.

The model described by M.1 is known as the linear threshold model. An individ-
ual adopts a behavior, and does not change it thereafter, if at least a certain number
of its neighbors adopts that behavior. Various variations can also be defined, see
e.g. M.2 and M.3, and again [Kle07] for an overview. The cascading intuition in all
the variations however remains unchanged. These models can generally be motivated
through a game theoretic setup. We will not be discussing such setups in this chapter.
The no-recovery aspect of the models considered may be further relaxed by introduc-
ing appropriate time stamps. One such connection is described in [Kle07]. We are
however interest in the instances where no-recovery occurs.

The models may also be given an interpretation in epidemiology. Every agent
may either be healthy or infected. Interaction with an infected individual causes
infections. This is in direct resemblance to M.0. Stochastics can also be added,
either for a realistic approach or often for tractability. There is also a vast literature
on processes over graphs, see e.g., [Dur07] and [New10]. Our aim is to capture the
consequential effects that are induced by the interaction of several entities. We thus
leave out any stochatics for the moment; they may be added later with technical
work.

On a different end, inspired by cascading failure in electrical grids, consider the
following simple resistive circuit. The intent is to guide the reader into a more realistic
direction.

L1 L2

−
+

If line L2 is disconnected from the voltage source, then line L1 will also be disconnected
from the source. Indeed, the current passing through L1 has to pass through L2. The
converse is, of course, not true. This interdependence between L1 and L2 is easily
captured by a system in L2{L1,L2} . More general dependencies (notably failures caused
by a redistribution of currents) can be captured, and concurrency can be taken care
of by going to power sets. Indeed, M.0 also captures general reachability problems,
where a node depicts an element of the state space. Specifically, let S be a set of
states of some system, and consider a reflexive and transitive relation → such that
a → b means that state b is reachable from state a. The map 2S → 2S where
A 7→ {b : a → b for some a ∈ A} satsfies A.1, A.2, and A.3 when 2S is ordered by
inclusion.
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This work abstracts out the essential properties that gives rise to these situations.
The model M.3 depicts the most general form over the boolean lattice. In M.3,
the set S can be interpreted to contain n events, and an element of 2S then depicts
which events have occured. A system is then interpreted as a collection of (monotone)
implications: if such and such event occurs, then such event occurs. The more general
model M.4 will be evoked in Section 4.8, while treating connections to formal methods
and semantics of programming languages.

On closure operators.

As mentioned in the introduction, the maps satisfying A.1, A.2 and A.3 are often
known as closure operators. On one end, they appeared in the work of Tarski (see
e.g., [Tar36] and [Tar56]). On another end, they appeared in the work of Birkhoff,
Ore and Ward (see e.g., [Bir36], [Ore43] and [War42], respectively). The first origin
reflects the consequential relation in the effects considered. The second origin reflects
the theory of interaction of multiple systems. Closure operators appear as early
as [Moo10]. They are intimately related to Moore families or closure systems (i.e.,
collection of subsets of S containing S and closed under intersection) and also to
Galois connections (see e.g., [Bir67] Ch. V and [Eve44]). Every closure operator
corresponds to a Moore family (see e.g., Subsection 4.3.3). This connection will be
extensively used throughout the chapter. Most of the properties derived in Sections
4.3 and 4.4 can be seen to appear in the literature (see e.g. [Bir67] Ch. V and [CM03]
for a recent survey). They are very elementary, and will be easily and naturally
rederived whenever needed. Furthermore, every Galois connection induces one closure
operator, and every closure operator arises from at least one Galois connection. Galois
connection will be briefly discussed in Section 4.7. They will not however play a major
explicit role in this chapter.

4.3.3 The fixed points of the systems.

As each map in L sends each state to a respective fixed point, a grounded under-
standing of a system advocates an understanding of its fixed points. We develop such
an understanding in this subsection, and characterize the systems through their fixed
points. Let Φ be the map f 7→ {a : fa = a} that sends a system to its set of fixed
points.

Proposition 4.3.1. If f 6= g then Φf 6= Φg.

Proof. If Φf = Φg, then ga ≤ gfa = fa and fa ≤ fga = ga for each a. Therefore
f = g.

It is obvious that each state is mapped to a fixed point; it is less obvious that,
knowing only the fixed points, the system can be reconstructed uniquely. It seems
plausible then to directly define systems via their fixed point, yet doing so inherently
supposes an understanding of the image set of Φ.

Proposition 4.3.2. If f ∈ LP , then p̂ ∈ Φf .

111



Proof. Trivially p̂ ≤ fp̂ ≤ p̂.
Furthermore,

Proposition 4.3.3. If a, b ∈ Φf , then a ∧ b ∈ Φf .

Proof. It follows from A.2 that f(a ∧ b) ≤ fa and f(a ∧ b) ≤ fb. If a, b ∈ Φf , then
f(a ∧ b) ≤ fa ∧ fb = a ∧ b. The result follows as a ∧ b ≤ f(a ∧ b).

In fact, the properties in Propositions 4.3.2 and 4.3.3 fully characterize the image
set of Φ.

Proposition 4.3.4. If S ⊆ P is closed under ∧ and contains p̂, then Φf = S for
some f ∈ LP .

Proof. Construct f : a 7→ inf{b ∈ S : a ≤ b}. Such a function is well defined and
satisfies A.1, A.2 and A.3.

It follows from Propositions 4.3.2 and 4.3.3 that Φf forms a lattice under the in-
duced order≤. This conclusion coincides with that of Tarski’s fixed point theorem (see
[Tar55]). However, one additional structure is gained over arbitrary order-preserving
maps. Indeed, the meet operation of the lattice (Φf,≤) coincides with that of the
lattice (P,≤).

Example 4.3.5. Let f : 2V → 2V be the system derived from an instance (V,A) of
M.0. The fixed points of f are the sets S ⊆ V such that S ⊇ N(S). If S and T are
fixed points of f , then S ∩ T is a fixed point of f . Indeed, the set S ∩ T contains
N(S ∩ T ). The map f sends each set T to the intersection of all sets S ⊇ T ∪N(S).
Although every collection C of sets in 2V closed under ∩ and containing V can form a
system, it will not always be possible to find a digraph where C coincides with the sets
S ⊇ N(S). The model M.0 is not complex enough to capture all possible systems.

The space L is thus far only a set, with no further mathematical structure. The
theory becomes lively when elements of L become related.

4.3.4 Overview through an example.

We illustrate some main ideas of the chapter through an elementary example. The
example will run throughout the chapter, revisited in each section to illustrate its cor-
responding notions and results. The example we consider is the following (undirected)
instance of M.1:

A,2

B,1

C,2

The nodes are labeled A, B and C. Each node I is tagged with an integer kI
that denotes a threshold. Each node can then be in either one of two colors: black or
white. Node I is colored black (and stays black forever) when at least kI neighbors
are black. In our example, node A (resp. C) is colored black when both B and C
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(resp. A) are black. Node B is colored black when either A or C are black. A node
remains white otherwise.

The set underlying the state space is the set of possible colorings of nodes. Each
coloring may be identified with a subset of {A,B,C} containing the black colored
nodes. The state space will then be identified with 23, the set of all subsets of
{A,B,C}. The set 23 admits a natural ordering by inclusion (⊆) that turns it into a
lattice. It may then be represented through a Hasse diagram as:

ABC

aBCAbCABc

AbCaBcAbc

abc

Notation: We denote subsets of {A,B,C} as strings of letters. Elements in the
set are written in uppercase, while elements not in the set are written in lowercase.
Thus aBC, Abc and abc denote {B,C}, {A} and {} respectively. The string AC
(with b/B absent) denotes both AbC and ABC.

The system derived from our example is the map f : 23 → 23 satisfying A.1, A.2
and A.3 such that A 7→ ABC, C 7→ ABC and all remaining states are left unchanged.
The fixed points of f yield the following representation.

×

◦◦◦

◦×◦

×

We indicate, on the diagram, a fixed point by × and a non-fixed point by ◦.

4.3.5 On the system maps and their interaction.

As mentioned in the introduction, the systems of interest consist of a collection of
states along with internal dynamics. The collection of states is a finite set P . The
dynamics dictate the evolution of the system through the states and are governed by
a class K of maps P → P . The class K is closed under composition, contains the
identity map and satisfies:

P.1 If a 6= b and fa = b for some f ∈ K, then gb 6= a for every g ∈ K.

P.2 If gfa = b for some f, g ∈ K, then hga = b for some h ∈ K.
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The principles P.1 and P.2 naturally induce a partial order ≤ on the set P . The
principles P.1 and P.2 further force the functions to be well adapted to this order.

Proposition 4.3.6. There exists a partial order ≤ on P such that for each f ∈ K:

A.1 If a ∈ P , then a ≤ fa.

A.2 If a, b ∈ P and a ≤ b, then fa ≤ fb.

Proof. Define a relation ≤ on P such that a ≤ b if, and only if, b = fa for some
f ∈ K. The relation ≤ is reflexive and transitive as K is closed under composition and
contains the identity map, respectively. Both antisymmetry and A.1 follow from P.1.
Finally, if a ≤ b, then b = ga for some g. It then follows by P.2 that fb = fga = hfa
for some h. Therefore, fa ≤ fb.

We only alluded that the maps in K will govern our dynamics. No law of interac-
tion is yet specified as to how the maps will govern the dynamics. As the state space
is finite, the interaction may be motivated by iterative (functional) composition. For
some map φ : N→ K, the system starts in a state a0 and evolves through a1, a2, · · ·
with ai+1 = φiai. We reveal properties of such an interaction.

Let φ : N → S ⊆ K be a surjective map, and define a map Fi recursively as
F1 = φ1 and Fi+1 = φi+1Fi.

Proposition 4.3.7. For some M , we have Fm = FM for m ≥M .

Proof. It follows from A.1 that F1a ≤ F2a ≤ · · · . The result then follows from
finiteness of P .

Proposition 4.3.8. The map FM is idempotent if φ−1f is a non-finite set for each
f ∈ S.

Proof. If φ−1f is non-finite, then fF = F . If φ−1f is non-finite for all f ∈ S, then
FF = F as F is the finite composition of maps in S.

Let ψ : N → S be another surjective map, and define a map Gi recursively as
G1 = φ1 and Gi+1 = φi+1Gi. For some N , we necessarily get GN = Gn for n ≥ N .

Proposition 4.3.9. It follows that FM = GN , if φ−1f and ψ−1f are non-finite sets
for each f ∈ S.

Proof. Define F = FM and G = GN . As F and G are idempotent, then FG = G and
GF = F . Therefore Fa ≤ FGa = Ga and Ga ≤ GFa = Fa.

The maps governing the dynamics are to be considered as intrinsic mechanism
wired into the system. The effect of each map should not die out along the evolution
of the system, but should rather keep on resurging. Such a consideration hints to an
interaction insisting each map to be applied infinitely many times. There is immense
variability in the order of application. However, we only want to care about the
limiting outcome of the dynamics. By Proposition 4.3.9, such a variability would
then make no difference from our standpoint. We further know, through Proposition
4.3.8, that iterative composition in this setting cannot lead but to idempotent maps.
We then impose—with no loss in generality—a third principle (P.3) on K to contain
only idempotent maps. This principle gives rise to a third axiom.
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A.3 For a ∈ P , ffa = fa.

We define LP to be the set of maps satisfying A.1, A.2 and A.3. The set LP is
closed under composition and contains each element of K with P.3 imposed, including
the identity map. Furthermore, the principles P.1, P.2 and P.3 remain satisfied if K
is replaced by LP . We will then extend K to be equal to LP . This extension offers
greater variability in dynamics, and there is no particular reason to consider any
different set. We further consider only posets (P,≤) that are lattices, as opposed to
arbitrary posets.

4.4 The lattice of systems.

The theory of cascade effects presented in this chapter is foremost a theory of combi-
nations and interconnections. As such, functions shall be treated in relation to each
other. The notion of desirability on states introduced by the partial order translates
to a notion of desirability on systems. We envision that systems combined together
should form less desirable systems, i.e. systems that more likely to evolve to less de-
sirable states. Defining an order on the maps is natural to formalize such an intuition.
We define the relation ≤ on L, where f ≤ g if, and only if, fa ≤ ga for each a.

Proposition 4.4.1. The relation ≤ is a partial order on L, and the poset (L,≤) is
a lattice.

Proof. The reflexivity, antisymmetry and transitivity properties of ≤ follow easily
from A.1 and A.2. If f, g ∈ L, then define h : a 7→ fa ∧ ga. It can be checked that
h ∈ L. Let h′ be any lower bound of f and g, then h′a ≤ fa and h′a ≤ ga. Therefore
h′a ≤ fa ∧ ga = ha, and so every pair in L admits a greatest lower bound in L.
Furthermore, the map a 7→ p̂ is a maximal element in L. The set of upper bounds of
f and g in L is then non-empty, and necessarily contains a least element by finiteness.
Every pair in L then also admits a least upper bound in L.

We may then deduce join and meet operations denoted by + (combine) and ·
(project) respectively. The meet of a pair of systems was derived in the proof of
Proposition 4.4.1.

Proposition 4.4.2. If f, g ∈ L, then f · g is a 7→ fa ∧ ga.

On a dual end,

Proposition 4.4.3. If f, g ∈ L, then f + g is the least fixed point of the map h 7→
(fg)h(fg). As P is finite, it follows that f + g = (fg)|P |.

Proof. Define h0 = (fg)|P |. Since the map fg satisfies A.1 and A.2, then h0 satisfies
A.1 and A.2. Furthermore, iterative composition yields (fg)|P |+1 = (fg)|P |. Then h0

is idempotent i.e. satisfies A.3. The map h0 is then a fixed point of h 7→ (fg)h(fg).
Moreover, every upperbound on f and g is a fixed point of h 7→ (fg)h(fg). Let h′

be such an upperbound, then fh′ = h′ and gh′ = h′. It follows that h0h
′ = h′ i.e.

h0 ≤ h′.
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The lattice LP has a minimum and a maximum as it is finite. The minimum
element (denoted by 0 or 0p) corresponds to the identity map a 7→ a. The maximum
(denoted by 1 or 1p) corresponds to a 7→ p̂.

4.4.1 Interpretation and examples.

The + operator yields the most desirable system incorporating the effect of both of
its operands. The · operator dually yields the least desirable system whose effects
are contained within both of its operands. Their use and significance is partially
illustrated through the following six examples.

Example 0. Intuitive interpretation of the + operator

The + operation combines the rules of the systems. If each of f and g is seen to
be described by a set of monotone deduction rules, then f + g is the system that is
obtained from the union of these sets of rules. The intuitive picture of combining
rules may also found in the characterization f + g = (fg)|P |. Both rules of f and
g are iteratively applied on an initial state to yield a final state. Furthermore, the
order of composition does not affect the final state, as long as each system is applied
enough times. This insight follows from the interaction of A.1 and A.2, and is made
formal in Subsection 4.3.5.

In a societal setting, each agent’ state is governed by a set of local rules. Every
such set only affects the state of its corresponding agent. The aggregate (via +) of all
the local rules then defines the whole system. It allows for an interaction between the
rules, and makes way for cascade effects to emerge. In the context of failures in in-
frastructure, the + operator enables adding new conditions for failure/disconnections
in the system. This direction of aggregating local rules is further pursued in Section
4.5 on component realization. The definition of cascade effects is further expounded
in Section 4.7. The five examples to follow also provide additional insight.

Example 1. Overview on M.0

Let f and f ′ be systems derived from instances (V,A) and (V,A′) of M.0. If A′ ⊆ A,
then f ′ ≤ f . If A′ and A are non-comparable, an inequality may still hold as different
digraphs may give rise to the same system. The system f + f ′ is the system derived
from (V,A∪A′). The system f ·f ′ is, however, not necessarily derived from (V,A∩A′).
If (V,A) is a directed cycle and (V,A′) is the same cycle with the arcs reversed, then
f = f ′ while (V,A ∩ A′) is the empty graph and yields the 0 system.

Example 2. Combining update rules

Given a set S, consider a subset Ni ⊆ S and an integer ki for each i ∈ S. Construct
a map fi that maps X to X ∪{i} if |X ∩Ni| ≥ ki and to X otherwise. Finally, define
the map f = f1 + · · · + fn. The map f can be realized by an instance of M.1, and
each of the fi corresponds to a local evolution rule.
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Example 3. Recovering update rules

Given the setting of the previous example, define the map ei : X 7→ X ∪ {i}. This
map enables the extraction of a local evolution rule. Indeed, i ∈ (f · ei)X0 if, and
only if, i ∈ fX0. However, if j 6= i, then j ∈ (f · ei)X0 if, and only if, j ∈ X0. It
will later be proved that f = f · e1 + · · ·+ f · en. The system f can be realized as a
combination of evolution rules, each governing the behavior of only one element of S.

Example 4. An instance of Boolean systems

Consider the following two instances of M.4, where L is the Boolean lattice. Iteration
indices are dropped in the notation.

x1 := x1 ∨ (x2 ∧ x3) x1 = x1

x2 := x2 ∨ x3 x2 = x2 ∨ x3

x3 := x3 x3 = x3 ∨ (x1 ∧ x2)

Let f and g denote the system maps generated by the right and left instances. The
maps f + g (left) and f · g (right) can then be realized as:

x1 := x1 ∨ (x2 ∧ x3) x1 = x1

x2 := x2 ∨ x3 x2 = x2 ∨ x3

x3 := x3 ∨ (x1 ∧ x2) x3 = x3

The map f · g is the identity map.

Example 5. Closure under Meet and Join.

If f and g are derived from instances of M.1, then neither f+g nor f ·g are guaranteed
to be realizable as instances of M.1. If they are derived from instances of M.2, then
only f + g is necessarily realizable as an instance of M.2. As all systems (over the
Boolean lattice) can be realized as instances of M.3, both f + g and f · g can always
be realized as instances of M.3.

As an example, we consider the case of M.2. If (Cf , kf ) and (Cg, kg) are realizations
of f and g as M.2, then (Cf ∪Cg, k) is a realization of f +g, with k being kf on Cf and
kg on Cg. However, let S = {a, b, c} be a set, and consider Cf = {{a, b}} with kf = 1,
and Cg = {{b, c}} with kg = 1. The set {a, c} is not a fixed-point of f · g. Thus, if
a realization (Cf ·g, k) of f · g is possible, then {a, b, c} ∈ Cf ·g with k ≤ 2. However,
both {a, b} and {b, c} are fixed-points of f · g, contradicting such a realization.

4.4.2 Effect of the operators on fixed points.

The fixed point characterization uncovered thus far is independent of the order on
LP . The map Φ : f 7→ {a : fa = a} is also well behaved with respect to the + and ·
operations. For S, T ⊆ P , we define their set meet S ∧ T to be {a∧ b : a ∈ S and b ∈
T}.
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Proposition 4.4.4. If f, g ∈ L, then Φ(f + g) = Φf ∩ Φg and Φ(f · g) = Φf ∧ Φg.

Proof. If a ∈ Φf ∩ Φg, then ga ∈ Φf . As fga = a, it follows that a ∈ Φ(f + g).
Conversely, as (f + g)g = (f + g), if (f + g)a = a, then (f + g)ga = a and so ga = a.
By symmetry, if (f + g)a = a, then fa = a. Thus if a ∈ Φ(f + g), then a ∈ Φf ∩Φg.
Furthermore, (f ·g)a = a if, and only if, fa∧ga = a and the result Φ(f ·g) = Φf ∧Φg
follows.

Combination and projection lend themselves to simple operations when the maps
are viewed as a collection of fixed points. Working directly in ΦL will yield a remark-
able conceptual simplification.

4.4.3 Summary on fixed points: the isomorphism theorem.

Let F be the collection of all S ⊆ P such that p̂ ∈ S and a ∧ b ∈ S if a, b ∈ S.
Ordering F by reverse inclusion ⊇ equips it with a lattice structure. The join and
meet of S and T in F are, respectively, set intersection S ∩ T and set meet S ∧ T =
{a ∧ b : a ∈ S and b ∈ T}. The set S ∧ T may also be obtained by taking the union
of S and T and closing the set under ∧.

Theorem 4.4.5. The map Φ : f 7→ {a : fa = a} defines an isomorphism between
(L,≤,+, ·) and (F ,⊇,∩,∧).

Such a result is well known in the study of closure operators, and is relatively
simple. We refer the reader, for instance, to [Bir36], [Ore43] and [War42] for pieces of
this theorem, and to [Bir67] Ch V and [CM03] for a broader overview, more insight
and references. Nevertheless, the implications of it on the theory at hand can be
remarkable. Our systems will be interchangeably used as both maps and subsets
of P . The isomorphism enables a conceptual simplification, that enables emerging
objects to be interpreted as systems exhibiting cascade effects.

4.4.4 Overview through an example (continued).

We continue the running example. Our example is realized as a combination of three
evolution rules: one pertaining to each node. For instance, the rule of node A may
be realized as:

A,2

B,3

C,3

The threshold 3 is just a large enough integer so that the colors of node B or
node C do not change/evolve, regardless of the coloring on the graph. The system
derived from such a realization is the map fA : 23 → 23 satisfying A.1, A.2 and A.3
such that BC 7→ ABC and all remaining states are left unchanged. A fixed point
representation yields:
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×

◦××

×××

×

Similarly the maps fB and fC derived for the rules of B and C are represented
(respectively from left to right) through their fixed points as:

×

×◦×

◦×◦

×

×

××◦

×××

×

Our overall descriptive rule of the dynamics is constructed by a descriptive com-
bination of the evolution rules of A, B and C. With respect to the objects behind
those rules, the overall system is obtained by a + combination of the local systems.
Indeed we have f = fA+fB+fC , and such a combination is obtained by only keeping
the fixed points that are common to all three systems.

4.5 Components realization.

The systems derived from instances of “models” forget all the componental structure
described by the model. Nodes in M.0 and M.1 are bundled together to form the
Boolean lattice, and the system is a monolithic map from 2V to 2V . We have not dis-
cussed any means to recover components and interconnection structures from systems.
We might want such a recovery for at least two reasons. First, we may be interested
in understanding specific subparts of the modeled system. Second, we may want to
realize our systems as instances of other models. In state spaces isomorphic to 2S for
some S, components may often be identified with the elements of S. In the case of
M.0 and M.1, the components are represented as nodes in a graph. Yet, two elements
of S might also be tightly coupled as to form a single component. It is also less clear
what the components can be in non-Boolean lattices as state spaces. We formalize
such a flexibility by considering the set E of all maps 0q× 1q′ in LQ×LQ′ ⊆ LQ×Q′ for
Q×Q′ = P . The map 0q×1q′ sends (q, q′) ∈ Q×Q′ to (q, q̂′) where q̂′ is the maximum
element of Q′. Indeed, the system 0q, being the identity, keeps q unchanged in Q.
The system 1q′ , being the maximum system, sends q′ to the maximum element q̂′ of
Q′. We refer to the maps of E as elementary functions (or systems). A component
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realization of P is a collection of systems eA, · · · , eH in E where:

eA + · · ·+ eH = 1

eI · eJ = 0 for all I 6= J

For a different perspective, we consider a direct decomposition of P into lattices
A, · · · , H such that A × · · · × H = P . An element t of P can be written either
as a tuple (tA, · · · , tH) or as a string tA · · · tH . If (tA, · · · , tH) and (t′A, · · · , t′H) are
elements of P , then:

(tA, · · · , tH) ∨ (t′A, · · · , t′H) = (tA ∨ t′A, · · · , tH ∨ t′H) (4.1)

(tA, · · · , tH) ∧ (t′A, · · · , t′H) = (tA ∧ t′A, · · · , tH ∧ t′H). (4.2)

Indeed, the join (resp. meet) in the product lattice, is the product of the joins (resp.
meets) in the factor lattices. Maps eA, · · · , eH can be defined as eI : ti 7→ t̂i, that
keeps t unchanged and maps i to the maximum element î of I. These maps belongs
to LP , and together constitute a component realization as defined above. Conversely,
each component realization gives rise to a direct decomposition of P .

Theorem 4.5.1. Let eA, · · · , eH be a component realization of P . If f ∈ LP , then
f = f · eA + · · ·+ f · eH .

Proof. It is immediate that f · eA + · · · + f · eH ≤ f . To show the other inequality,
consider t /∈ Φf . Then tI 6= (ft)I for some I. Furthermore, if t′ ≥ t with t′I = tI ,
then t′ /∈ Φf . Assume t ∈ Φ(f · eI), then t = s ∧ r for some s ∈ Φf and r ∈ ΦeI .
It then follows that rI = î, the maximum element of I. Therefore sI = tI and s ≥ t
contradicting the fact that s ∈ Φf .

The map f · eI may evolve only the I-th component of the state space.

Proposition 4.5.2. If s ∈ P is written as ti, then (f · eI)s = t(fs)I , where (fs)I is
the projection of fs onto the component I.

Proof. We have (f · eI)s = fs ∧ eIs = f(ti) ∧ t̂i = t(fs)I . The last equality follows
from Equation 4.2.

It is also the evolution rule governing the state of component I as a function of
the full system state.

Proposition 4.5.3. Let eA, · · · , eH be a component realization of P . If f ∈ LP , then
fa = (f · eA)a ∨ · · · ∨ (f · eH)a for every a ∈ P .

Proof. It is immediate that (f · eA)a ∨ · · · ∨ (f · eH)a ≤ fa. The other inequality
follows from combining Proposition 4.5.2 and Equation 4.1.

Example 4.5.4. Let f be the system derived from an instance (V,A) of M.0. We
consider the maps ei : X 7→ X∪{i} for i ∈ V . The collection {ei} forms a component
realization where ei corresponds to node i in the graph. The system f · ei may be
identified with the ancestors of i, namely, nodes j where a directed path from j to i
exists. A realization (in the form of M.0) of f · ei then colors i black whenever any
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ancestor of it is black, leaving the color of all other nodes unchanged. Combining the
maps f · ei recovers the map f .

Interconnection structures (e.g. digraphs as used in M.1) may be further derived
by defining projection and inclusion maps accordingly and requiring the systems to
satisfy some fixed-point conditions. Such structures can be interpreted as systems in
LLP . They will not be considered in this chapter.

4.5.1 Defining cascade effects.

Given a component realization eA, · · · , eH , define a collection of maps fA, · · · , fH
where fI ≤ eI dictates the evolution of the state of component I as a function of P .
These update rules are typically combined to form a system f = fA+· · ·+fH . Cascade
effects are said to occur when f ·eI 6= fI for some I. The behavior governing a certain
(sub)system I is enhanced as this component is embedded into the greater system. We
should consider the definition provided, in this subsection, as conceptually illustrative
rather than useful and complete. The main goal of the chapter is to define a class of
systems exhibiting cascade effects. It is not to define what cascade effects are. We
instead refer the reader to [Ada17i] for an actionable definition and a study of these
effects. We will however revisit this definition in Section 4.7 with more insight.

The conditions under which such effects occurs depend on the properties of the
operations. If · distributes over +, then this behavior is never bound to occur; this
will seldom be the case as will be shown in the next section.

4.5.2 Overview through an example (continued).

We continue the running example. On a dual end, if we wish to view the nodes A,
B and C as distinct entities, we may define a component realization eA, eB and eC
represented (respectively from left to right) as:

×

◦××

◦◦×

◦

×

×◦×

◦×◦

◦

×

××◦

×◦◦

◦

Local evolution rules may be recovered through the systems f ·eA, f ·eB and f ·eC .
Those are likely to be different than fA, fB and fC as they also take into account
the effects resulting from their combination. The systems f · eA, f · eB and f · eC are
generated by considering Φf ∪ΦeI and closing this set under ∩. They are represented
(respectively from left to right) as:
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×

◦××

◦××

×

×

×◦×

◦×◦

×

×

××◦

××◦

×

The system f · eA captures the fact that node A can become black if only C is
colored black. A change in fA would, however, require both B and C to be black.
Recombining the obtained local rules is bound to recover the overall system, and
indeed f = f · eA + f · eB + f · eC as can be checked by keeping only the common
fixed points.

4.6 Properties of the systems lattice.

Complex systems will be built out of simpler systems through expressions involving
+ and ·. The power of such an expressiveness will come from the properties exhibited
by the operators. Those are trivially derived from the properties of the lattice L
itself.

Proposition 4.6.1. The following propositions are equivalent. (i) The set P is lin-
early ordered. (ii) The lattice LP is distributive. (iii) The lattice LP is modular.

Proof. Property (ii) implies (iii) by definition. If P is linearly ordered, then L is
a Boolean lattice, as any subset of P is closed under ∧. Therefore (i) implies (ii).
Finally, it can be checked that (f, g) is a modular pair if, and only if, Φ(f · g) =
Φ(f)∪Φ(g) i.e., Φ(f)∪Φ(g) is closed under ∧. If LP is modular, then each pair of f
and g is modular. In that case, each pair of states in P are necessarily comparable,
and so (iii) implies (i).

The state spaces we are interested in are not linearly ordered. Non-distributivity
is natural within the interpreted context of cascade effects, and has at least two impli-
cations. First, the decomposition of Theorem 4.5.1 cannot follow from distributivity,
and relies on a more subtle point. Second, cascade effects (as defined in Section 4.5)
are bound to occur in non-trivial cases.

The loss of modularity is suggested by the asymmetry in the behavior of the op-
erator. The + operator corresponds to set intersection, whereas the · operator (is less
convenient) corresponds to a set union followed by a closure under ∧. Nevertheless,
the lattice will be half modular.

Proposition 4.6.2. The lattice LP is (upper) semimodular.

Proof. It is enough to prove that if f · g ≺ f and f · g ≺ g, then f ≺ f + g and
g ≺ f + g. If f · g is covered by f and g, then |Φf − Φg| = |Φg − Φf | = 1. Then
necessarily f + g covers f and g.

Semi-modularity will be fundamental in defining the µ-rank of a system in Section
7. The lattice L is equivalently a graded poset, and admits a rank function ρ such
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that ρ(f + g) + ρ(f · g) ≤ ρ(f) + ρ(g). The quantity ρ(f) is equal to the number of
non-fixed points of f i.e. |P −Φf |. More properties may still be extracted, up to full
characterization of the lattice. Yet, such properties are not needed in this chapter.

4.6.1 Additional remarks on the lattice of systems.

This subsection illustrates some basic lattice theoretic properties on 22, represented
through its Hasse diagram below. We follow the notation of the running example (see
e.g., Subsection 4.3.4).

AB

aBAb

ab

The lattice L22 may be represented as follows. The systems are labeled through
their set of fixed-points.

{AB}

{aB,AB}{ab, AB}{Ab,AB}

{ab, aB,AB}{ab, Ab,AB}

{ab, aB,Ab,AB}

A map f ∈ LP will be called prime if P −Φf is closed under ∧. Those maps will
be extensively used in Section 4.9.

All the systems are prime (i.e. have the set of non-fixed points closed under ∩)
except for {ab, AB}. The lattice L22 is (upper) semimodular as a pair of systems are
covered by their join (+) whenever they cover their meet (·). All pairs form modular
pairs except for the pair {Ab,AB} and {aB,AB}. The lattice L22 is graded, and the
(uniform) rank of a system is equal to the number of its non-fixed points as can be
checked.

On atoms and join-irreducible elements.

An atom is an element that covers the minimal element of the lattice. In L22 , those
are {ab, aB,AB} and {ab, Ab,AB}. A join-irreducible element is an element that
cannot be written as a join of other elements. An atom is necessarily a join-irreducible
element, however the converse need not be true. The systems {aB,AB} and {bA,AB}
are join-irreducible but are not atoms.

The join-irreducible elements in LP may be identified with the pairs (s, t) ∈ P ×P
such that t covers s. They can be identified with the edges in the Hasse diagram of
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P . For a covering pair (s, t), define fst to be the least map such that s 7→ t. Then
fst is join-irreducible for each (s, t), and every element of LP is a join of elements in
{fst}.

Proposition 4.6.3. The map fst is prime for every (s, t).

Proof. The map fst is the least map such that s 7→ t. It follows that s is the least
non-fixed point of fst, and that every element greater than t belongs to Φfst. If
a, b /∈ Φfst, then their meet a∧b is necessarily not greater than t, for otherwise we get
a, b ∈ Φfst. If a∧b is comparable to t, then a∧b = s /∈ Φfst. If a∧b is non-comparable
to t, then (a ∧ b) ∧ t = s, and so again a ∧ b /∈ Φfst.

On coatoms and meet-irreducible elements.

A coatom is an element that is covered by the maximal element of the lattice. In
L22 , those are {ab, AB}, {aB,AB} and {Ab,AB}. In general, the coatoms of L are
exactly the systems f where |Φf | = 2. Note that the maximal element p̂ of P is
always contained in Φf .

Proposition 4.6.4. Every f ∈ LP is a meet of coatoms.

Proof. For each a ∈ P , let ca ∈ L be such that Φca = {a, p̂}. If Φf = {a, b, · · · , h},
then f = ca · cb · · · · · ch.

Such lattices are called co-atomistic. The coatoms, in this case, are the only
elements that cannot be written as a meet of other elements.

4.7 On least fixed-points and cascade effects.

The systems are defined as maps P → P taking in an input and yielding an output.
The interaction of those systems (via the operator +) however does not depend on
functional composition or application. It is only motivated by them, and the input-
ouput functional structure has been discarded throughout the analysis. It will then
also be more insightful to not view f(a) as functional application. Such a change of
viewpoint can be achieved via a good use of least fixed-points. The change of view
will also lead us the a more general notion of cascade effects.

We may associate to every a ∈ P a system free(a) : − 7→ − ∨ a in LP . We can
then interpret f(a) differently:

Proposition 4.7.1. The element f(a) is the least fixed-point of f + free(a).

Proof. We have f(a) = ∧{p ∈ Φ(f) : a ≤ p} = ∧{p ∈ Φ(f) ∩ Φ(free(a))}. The result
follows as Φ(f) ∩ Φ(free(a)) = Φ(f + free(a)).

The map free : P → LP is order-preserving. It also preserves joins. Indeed, if
a, b ∈ P , then free(a) + free(b) = free(a ∨ b). Conversely, as each map in LP admits
a least fixed-point, we define eval : LP → P to be the map sending a system to its
least fixed-point. The map eval is also order-preserving, and we obtain:
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Theorem 4.7.2. If a ∈ P and f ∈ LP , then:

free(a) ≤ f if, and only if, a ≤ eval(f)

Proof. If free(a) ≤ f , then a ≤ b for every fixed-point b of f . Conversely, if a ≤
eval(f), then {b ∈ P : a ≤ b} contains Φ(f), the set of fixed points of f .

The pair of maps free and eval are said to be adjoints, and form a Galois connection
(see e.g., [Bir67] Ch. V, [Eve44], [Ore44] and [EKMS93] for a treatment on Galois
connections). The intuition of cascading phenomena can be seen to partly emerge
from this Galois connection. By duality, the map eval preserves meets. Indeed, the
least fixed-point of f · g is the meet of the least fixed-points of f and g. The map
eval does not however always preserve joins. Such a fact causes cascading intuition
to arise. For some pairs f, g ∈ LP , we get:

eval(f + g) 6= eval(f) ∨ eval(g) (4.3)

Generally, two systems interact to yield, combined, something greater than what they
yield separately, then combined. Specifically, consider f ∈ LP and a ∈ P such that
eval(f) ≤ a. If eval(f + free(a)) 6= eval(f)∨ eval(free(a)), then f(a) 6= a. In this case,
the point a expanded under the map f , and cascading effects have thus occured. The
chapter will not pursue this line of direction. This direction is extensively pursued in
[Ada17i]. Also, a definition of cascade effects was already introduced in Section 4.5.
We thus briefly revisit it and explain the connection to the inequality presented. The
inequality can be further explained by the semimodularity of the lattice, but such a
link will not be pursued.

4.7.1 Revisiting component realization.

Given a component realization eA, · · · , eH of P , we let fA, · · · , fH be a collection of
maps where fI ≤ eI dictates the evolution of the state of component I as a function
of P . If f = fA + · · ·+ fH , then recall from Section 4.5 that cascade effects are said
to occur when f · eI 6= fI for some I.

We will illustrate how this definition links to the inequality obtained from the
Galois connection. For simplicity, we consider only two components A and B. Let
eA, eB be a component realization of P , and consider two maps fA, fB where fI ≤ eI .
Define f = fA + fB. If f · eA 6= fA, then (f · eA)a 6= fAa = a for some fixed point a
of fA. We then have fa 6= fAa ∨ fBa. As fa = (f · eA)a ∨ (f · eB)a by Proposition
4.5.3, we get:

eval
(
fA + free(a) + fB + free(a)

)
6= eval

(
fA + free(a)

)
∨ eval

(
fB + free(a)

)
(4.4)

Conversely, if Equation 4.4 holds, then either fAa 6= (f · eA)a or fBa 6= (f · eB)a.
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4.7.2 More on Galois connections.

The inequality in Equation 4.3 gives rise to cascading phenomena in our situation. It
is induced by the Galois connection between free and eval, and the fact that eval does
not preserve joins. The content of the lattices can however be changed, keeping the
phenomenon intact. Both the lattice of systems LP and the lattice of states P can
be replaced by other lattices. If we can setup another such inequality for the other
lattices, then we would have created cascade effects in a different situation. We refer
the reader to [Ada17i] for a thorough study along those lines. The particular class of
systems studied in this chapter is however somewhat special. Indeed, every system
itself arises from a Galois connection. Thus, if we focus on a particular system f ,
then we get a Galois connection induced by the inclusion:

Φ(f)→ P

And indeed, cascade effects will emerge whenever a ∨Φ(f) b 6= a ∨P b. This direction
will not be further discussed in the chapter.

This double presence of Galois connection seems to be meerly a coincidence. It
implies however that we can recover cascading phenomena in our situation at two
levels: either at the level of systems interacting or at the level of a unique system
with its states interacting.

4.7.3 Higher-order systems.

For a lattice P , we constructed the lattice LP . By iterating the construction once,
we may form LLP . Through several iterations, we may recursively form Lm+1

P = LLmP
with L0

P = P . Systems in LmP take into account nested if-then statements. The
construction induces a map eval : Lm+1

P → LmP , sending a system to its least fixed-
point. We thus recover a sequence:

· · · → L3
P → L2

P → LP → P

The free map construction induces an inclusion LmP → Lm+1
P for every m. We may

then define an infinite lattice L∞P =
⋃∞
m=1 LmP that contains all finite higher-order

systems. We may also decide to complete L∞P in a certain sense to take into account
infinite recursion. Such an idea have extensively recurred in denotational semantics
and domain theory (see e.g., [Sco71], [SS71] and [Sco72]) to yield semantics to pro-
gramming languages, notably the λ-calculus. This idea will however not be further
pursued in this chapter.

4.8 Connections to formal methods.

The ideas developed in this chapter intersect with ideas in formal methods and se-
mantics of languages. To clarify some intersections, we revisit the axioms. A map
f : P → P belongs to LP if it satisfies:
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A.1 If a ∈ P , then a ≤ fa.

A.2 If a, b ∈ P and a ≤ b, then fa ≤ fb.

A.3 If a ∈ P , then ffa = fa.

The axiom A.2 may generally be replaced by one requiring the map to be scott-
continuous, see e.g. [Sco72] for a definition. Every scott-continuous function is order-
preserving, and in the case of finite lattices (as assumed in this chapter) the converse
is true. The axiom A.3 may then be discarded, and fixed points can generally be
recovered by successive iterations of the map (ref. the Kleene fixed-point theorem).
The axiom A.1 equips the systems with their expansive nature. The more important
axiom is A.2 (or potentially scott-continuity) which is adaptive to the underlying
order. Every map satisfying A.2 can be closed into a map satisfying A.1 and A.2, by
sending f(−) to − ∨ f(−). The least fixed-points of both coincide.

The interplay of A.1 and A.2 ensures that concurrency of update rules in the
systems does not produce any conflicts. The argument is illustrated in Proposition
4.4.3, and is further fully refined in Subsection 4.3.5. The systems can however
capture concurrency issues by considering power sets. As an example, given a Petri
net, we may construct a map sending a set of initial token distribution, to the set of
all possible token distributions that can be caused by such an initial set. This map is
easily shown to satisfy the axioms A.1, A.2 and A.3. A more elaborate interpretation
of the state space, potentially along the lines of event structures as described in
[NPW81], may lead to further connections for dealing with concurrency issues.

The interplay of lattices and least fixed-point appears throughout efforts in formal
methods and semantics of languages. We illustrate the relevance of A.1 and A.2 via
the simple two-line program Prog:

1. while ( x > 5 ) do

2. x := x - 1;

We define a state of this program to be an element of Σ := N× {in1, out1, in2, out2}.
A number in N denotes the value assigned to x, and ini (resp. outi) indicates that
the program is entering (resp. exiting) line i of the program. For instance, (7, out2)
denotes the state where x has value 7 right after executing line 2. We define a finite
execution trace of a program to be a sequence of states that can be reached by some
execution of the program in finite steps. A finite execution trace is then an element
of Σ∗, the semigroup of all finite strings over the alphabet Σ. Two elements s, s′ ∈ Σ∗

can be concatenated via s ◦ s′. We then define f : 2Σ∗ → 2Σ∗ such that:

B 7→ f(B) :=
{

(n, in1) : n ∈ N
}

∪
{
tr ◦ (n, out1) : tr ∈ B and tr ∈ Σ∗ ◦ (n, in1)

}
∪
{
tr ◦ (n, in2) : tr ∈ B and tr ∈ Σ∗ ◦ (n, out1) and n > 5

}
(4.5)

∪
{
tr ◦ (n, out2) : tr ∈ B and tr ∈ Σ∗ ◦ (n+ 1, in2)

}
∪
{
tr ◦ (n, in1) : tr ∈ B and tr ∈ Σ∗ ◦ (n, out2)

}
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The map f satisfies A.1 and A.2. If Bsol ⊆ Σ∗ is the set of finite excution traces,
then Bsol ⊇ f(Bsol). Furthermore, Bsol is the least fixed of f . This idea is pervasive
in obtaining semantics of programs. The maps f , in deriving semantics, are however
typically only considered to be order-preserving (or Scott-continuous). The connec-
tion to using maps satisfying both A.1 and A.2 somewhat hinges on the fact that for
every order-preserving map h, the least fixed-point of h(−) and − ∨ h(−) coincide.
The map f may also be closed under A.3 via successive iterations, without modify-
ing the least fixed-point, to yield a map in L2Σ∗ . We refer the reader to [NNH15]
Ch 1 for an overview of various methods along the example we provide, the work
on abstract interpretation (see e.g., [CC77] and [Cou01]) for more details on traces
and semantics, and the works [Sco71], [SS71] and [Sco72] for the relevance of A.2
(or Scott-continuity) in denotational semantics. In a general poset, non-necessarily
boolean, we recover the form of M.4. Galois connections also appear extensively in
abstract interpretation. The methods of abstract interpretation can be enhanced and
put to use in approximating (and further understanding) the systems in this chapter.

Various ideas present in this chapter may be further linked to other areas. That
ought not be surprising as the axioms are very minimal and natural. From this
perspective, the goal of this work is partly to guide efforts, and very effective tools,
in the formal methods community into dealing with cascade-like phenomena.

4.8.1 Cascading phenomena in this context.

We also illustrate cascade effects, as described in Section 4.7, in the context of pro-
grams. Consider another program Prog’:

1. while ( x is odd ) do

2. x := x - 1;

Each of Prog and Prog’ ought to be thought of as a partial description of a larger
program. Their interaction yields the simplest program allowing both descriptions,
namely:

1. while ( x > 5 ) or ( x is odd ) do

2. x := x - 1;

Let f and g be the maps (satisfying A.1 and A.2) attributed to Prog and Prog’

respectively, as done along the lines of Equation 4.5. The set of finite execution
traces of the combined program is then the least fixed-point of f∨g, where (f∨g)B =
fB∪gB. Note that f∨g then satisfies both A.1 and A.2. Cascade effects then appear
upon interaction. The interaction of the program descriptions is bound to produce
new traces that cannot be accounted for by the traces of the separate programs.
Indeed, every trace containing:

(5, out2) ◦ (5, in1) ◦ (5, out1) ◦ (5, in2)

allowed in the combined program is not allowed in neither of the separate programs.
Formally, define a map eval that sends a function 2Σ∗ → 2Σ∗ satisfying A.1 and A.2
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to its least fixed point. The map eval is well defined as 2Σ∗ is a complete lattice. We
then get an inequality:

eval(f ∨ g) 6= eval(f) ∪ eval(g)

We may also link back to systems in L and the cascade effects’ definition provided
for them. If f̄ and ḡ denote the closure of f and g in 2Σ∗ to satisfy A.3 (e.g. via
iterative composition in the case of scott-continuous functions), then the closure of
f ∨ g corresponds to f̄ + ḡ. Of course, for every h satisfying A.1 and A.2, both h and
h̄ have the same least fixed-point. We then have:

eval(f̄ + ḡ) 6= eval(f̄) ∪ eval(ḡ)

The chapter will mostly be concerned with properties of the systems in L. The
direction of directly studying the inequality will not be pursued in the chapter. It is
extensively pursued in [Ada17i].

4.9 Shocks, failure and resilience.

The theory will be interpreted within cascading failure. The informal goal is to derive
conditions and insight determining whether or not a system hit by a shock would fail.
Such a statement requires at least three terms—hit, shock and fail—to be defined.

The situation, in the case of the models M.i, may be interpreted as follows. Some
components (or agents) initially fail (or become infected). The dynamics then lead
other components (or agents) to fail (or become infected) in turn. The goal is to assess
the conditions under which a large fraction of the system’s components fail. Such a
state may be reached even when a very small number of components initially fail.
This section aims to quantify and understand the resilence of the system to initial
failures. Not only may targeted componental failures be inflicted onto the system,
but also external (exogenous) rules may act as shocks providing conditional failures
in the systems. A shock in this respect is to be regarded as a system. This remark is
the subject of the next subsection.

4.9.1 A notion of shock.

Enforcing a shock on a system would intuitively yield an evolved system incorporating
the effects of the shock. Forcing such an intuition onto the identity system leads us
to consider shocks as systems themselves. Any shock s is then an element of LP .
Two types of shocks may further be considered. Push shocks evolve state p̌ to some
state a. Pull shocks evolve some state a directly to p̂. Allowing arbitrary + and ·
combinations of such systems generates L. The set of shocks is then considered to be
the set L.

Shocks trivially inherit all properties of systems, and can be identified with their
fixed points as subsets of P . Finally, a shock s hits a system f to yield the system
f + s.
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Example 4.9.1. One example of shocks (realized through the form of M.i) inserts
element to the initial set X0 to obtain X ′0. This shock corresponds to the (least) map
in L that sends ∅ to X ′0. Equivalently, this shock has as a set of fixed points the
principal (upper) order filter of the lattice P generated by the set X ′0 (i.e. the fixed
points are all, and only, the sets containing X ′0). Further shocks may be identified
with decreasing ki or adding an element j to Ni for some i.

Remark

It will often be required to restrict the space of shocks. There is no particular reason
to do so now, as any shock can be well justified, for instance, in the setting of M.3.
We may further wish to keep the generality to preserve symmetry in the problem,
just as we are not restricting the set of systems.

4.9.2 A notion of failure.

A shock is considered to fail a system if the mechanisms of the shock combined with
those of the system evolve the most desirable state to the least desirable state. Shock
s fails system f if, and only if, s+ f = 1.

In the context of M.i, failure occurs when X|S| contains all the elements of S. This
notion of failure is not restrictive as it can simulate other notions. As an example,
for C ⊆ P , define uC ∈ L to be the least system that maps a to p̂ if a ∈ C. Suppose
shock s “fails” f if (f+s)a ≥ c for some c ∈ C and all a. Then s “fails” f if, and only
if, f + s + uc = 1. The notion may further simulate notions of failure arising from
monotone propositional sentences. If we suppose that (s1, s2, s3) “fails” (f1, f2, f3) if
(s1 fails f1) and (either s2 fails f2 or s3 fails f3), then there is a map ψ into L such
that (s1, s2, s3) “fails” (f1, f2, f3) if, and only if, ψ(s1, s2, s3) + ψ(f1, f2, f3) = 1. We
can generally construct a monomorphism ψ : LP×LQ → LP×Q such that s + f = 1
and (or) t+ g = 1 if, and only if, ψ(s, t) + ψ(f, g) = 1.

4.9.3 Minimal shocks and weaknesses of systems.

We set to understand the class of shocks that fail a system. We define the collection
Sf :

Sf = {s ∈ L : f + s = 1}

As a direct consequence of Theorem 4.4.5, we get:

Corollary 4.9.2. Shock s belongs to Sf if, and only if, Φf ∩ Φs = {p̂}

For instances of M.i, it is often a question as to whether or not there is some X0

with at most k elements, where the final set X|S| contains all the elements of S. Such
a set exists if, and only if, for some set X of size k, all sets containing it are non-fixed
points (with the exception of S).

If s ≤ s′ and s ∈ Sf , then s′ ∈ Sf . Thus, an understanding of Sf may come from
an understanding of its minimal elements. We then focus on the minimal shocks that
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fail a system f , and denote the set of those shocks by Šf :

Šf = {s ∈ Sf : for all t ∈ Sf , if t ≤ s then t = s}

A map f ∈ LP will be called prime if P − Φf is closed under ∧. A prime map
f is naturally complemented in the lattice, and we define ¬f to be (the prime map)
such that Φ(¬f) = P − (Φf − {p̂}). If f is prime, then ¬¬f = f .

Proposition 4.9.3. The system f admits a unique minimal shock that fails it, i.e.
|Šf | = 1 if, and only if, f is prime.

Proof. If f is prime, then ¬f ∈ Sf . The map ¬f is also the unique minimal shock as
if s ∈ Sf , then Φs ⊆ Φ¬f by Proposition 4.9.2. Conversely, suppose f is not prime.
Then a = b ∧ c for some a ∈ Φf and b, c /∈ Φf . Define b′ = fb and c′ = fc and
consider the least shocks s0, sb′ and sc′ such that s0p̌ = a, sb′b

′ = p̂ and sc′c
′ = p̂.

Furthermore, define sb and sc such that sba = b and sca = c. Then b ∈ Φsb and
c ∈ Φsc. Finally, s0 + sb + sb′ and s0 + sc + sc′ belong to Sf , but their meet is not in
Sf as a is a fixed point of (s0 + sb + sb′) · (s0 + sc + sc′). This contradicts the existence
of a minimal element in Sf .

As an example, consider an instance of M.1 where “the underlying graph is undi-
rected” i.e. i ∈ Nj if, and only if, j ∈ Ni. Define f to be the map X0 7→ X|S|. If
f(∅) = ∅ and f(S − {i}) = S for all i, then |Šf | 6= 1 i.e. there are at least two
minimal shock that fail f . Indeed, consider a minimal set X such that fX 6= X. If
Y = (X ∪Ni)− {i} for some i ∈ X, then fY 6= Y . However, f(X ∩ Y ) = X ∩ Y by
minimality of X.

Theorem 4.9.4. If s belongs to Šf , then s is prime.

Proof. Suppose s is not prime. Then, there exists a minimal element a = b ∧ c such
that a ∈ Φs and b, c /∈ Φs. We consider (b, c) to be minimal in the sense that for
(b′, c′) 6= (b, c), if b′∧c′ = a, b′ ≤ b and c′ ≤ c then either b′ ∈ Φs or c′ ∈ Φs. As a ∈ Φs
and s ∈ Sf , it follows that a /∈ Φf . Therefore, at least one of b or c is not in Φf .
Without loss of generality, suppose that b /∈ Φf . If for each x ∈ Φs non-comparable
to b, we show that b∧ x ∈ Φs, then it would follow that s is not minimal as Φs∪ {b}
is closed under ∧ and would constitute a shock s′ ≤ s that fails f . Consider x ∈ Φs,
and suppose b ∧ x /∈ Φs. If a ≤ x, then we get (b ∧ x) ∧ c = a contradicting the
minimality of (b, c). If a and x are not comparable, then a ∧ x 6= a. But a ∧ x ∈ Φs
and a∧x = (b∧x)∧ c with both (b∧x) and c not in Φs, contradicting the minimality
of a.

Dually, we define the set of prime systems contained in f .

Wf = {w ≤ f : w is prime}

Proposition 4.9.5. If f ∈ L and Wf = {w1, · · · , wm}, then f = w1 + · · ·+ wm.

Proof. All join-irreducible elements of L are prime (see Subsection 4.6.1). Therefore
Wf contains all join-irreducible elements less than f , and f is necessarily the join of
those elements.
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Keeping only the maximal elements of Wf is enough to reconstruct f . We define:

Ŵf = {w ∈ Wf : for all v ∈ Wf , if w ≤ v then v = w}

Proposition 4.9.6. The operator ¬ maps Šf to Ŵf bijectively.

Proof. If f is prime, then ¬¬f = f . It is therefore enough to show that if s ∈ Šf ,
then ¬s ∈ Ŵf and that if w ∈ Ŵf , then ¬w ∈ Šf . For each s ∈ Šf , as ¬s ≤ f , there

is a w ∈ Ŵf such that ¬s ≤ w. Then ¬w ≤ s, and so s = ¬w as s is minimal. By
symmetry we get the result.

We will term prime functions in Wf as weaknesses of f . Every system can be
decomposed injectively into its maximal weaknesses, and to each of those weaknesses
corresponds a unique minimal shock that leads a system to failure. A minimal shock
fails a system because it complements one maximal weakness of the system. Further-
more, whenever an arbitrary shock s fails f that is because a prime subshock s′ of s
complements a weakness w in f .

4.9.4 µ-Rank, resilience and fragility.

We may wish to quantify the resilience of a system. One interpretation of it may be
the minimal amount of effort required to fail a system. The word effort presupposes
a mapping that assigns to each shock some magnitude (or energy). As shocks are
systems, such a mapping should coincide with one on systems.

Let R+ denote the non-negative reals. We expect a notion of magnitude r : L →
R+ on the systems to satisfy two properties.

R.1 r(f) ≤ r(g) if f ≤ g

R.2 r(f + g) = r(f) + r(g)− r(f · g) if (f, g) are modular.

The less desirable a system is, the higher the magnitude the system has. It is helpful
to informally think of a modular pair (f, g) as a pair of systems that do not interfere
with each other. In such a setting, the magnitude of the combined system adds up
those of the subsystems and removes that of the common part.

The rank function ρ of L necessarily satisfies R.1 and R.2 as L is semi-modular. It
can also be checked that, for any additive map µ : 2P → R+, the map f 7→ µ(P −Φf)
satisfies the two properties. Thus, measures µ on P can prove to be a useful source
for maps capturing magnitude. However, any notion of magnitude satisfying R.1 and
R.2 is necessarily induced by a measure on the state space.

Theorem 4.9.7. Let r be a map satisfying R.1 and R.2, then there exists an additive
map µ : 2P → R+ such that r(f) = µ(P − Φf) + r(0).

Proof. A co-atom in L is an element covered by the system 1. For each f , there is a
sequence of co-atoms c1, · · · , cm ∈ L such that if fi = c1 · · · · · ci, then (fi, ci+1) is a
modular pair, fi + ci+1 = 1 and fm = f . It then follows by R.2 that r(fi + ci+1) =
r(fi) + r(ci+1) − r(fi · ci+1). Therefore r(f) = r(1) −

∑m
i=1 r(1) − r(ci). Let ca be
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the co-atom with a ∈ Φca, and define µ({a}) = r(1) − r(ca) and µ({p̂}) = 0. It
follows that r(0) = r(1) − µ(P ) and so r(f) = r(0) + µ(P ) − µ(Φf). Equivalently
r(f) = µ(P − Φf) + r(0).

As it is natural to provide the identity system 0 with a zero magnitude, we consider
only maps r additionally satisfying:

R.3 r(0) = 0.

Let r be a map satisfying R.1, R.2 and R.3 induced by the measure µ. If µS = |S|,
then r is simply the rank function ρ of L. We thus term r (for a general µ) as a µ-rank
on L. The notion of µ-rank is similar to that of a norm as defined on Banach spaces.
Scalar multiplication is not defined in this setting, and does not translate (directly)
to the algebra presented here. However, the µ-rank does give rise to a metric on L.

Example 4.9.8. Let f be the system derived from an instance (V,A) in M.0, and let
µ be the counting measure on 2V i.e. µS = |S|. If A is symmetric, then the system f
has 2c fixed points where c is the number of connected components in the graph. The
µ-rank of f is then 2|V | − 2c.

Let r be a µ-rank. The quantity we wish to understand (termed resilience) would
be formalized as follows:

res(f) = min
s∈Sf

r(s)

We may dually define the following notion (termed fragility):

fra(f) = max
w∈Wf

r(w)

Proposition 4.9.9. We have fra(f) + res(f) = r(1)

Proof. We have mins∈Šf
r(s) = minw∈Ŵf

r(¬w) and r(¬w) = r(1) − r(w) for w ∈
Ŵf .

Example 4.9.10. Let f be the system derived from an instance (V,A) in M.0, and
let µ be the counting measure on 2V i.e. µS = |S|. If A is symmetric, then the
resilience/fragility of f is tied to the size of the largest connected component of the
graph. Let us define n = |V |. If (V,A) had one component, then res(f) = 2n−1. If
(V,A) had m components of sizes c1 ≥ · · · ≥ cm, then res(f) = 2n−1 + 2n−c1−1 + · · ·+
2n−(c1+···+cm−1)−1. As r(1) = 2n − 1, it follows that fra(f) = 2n − 1− res(f).

The quantity we wish to understand may be either one of res or fra. However,
the dual definition fra puts the quantity of interest on a comparable ground with
the µ-rank of a system. It is always the case that fra(f) ≤ r(f). Furthermore,
equality is not met unless the system is prime. It becomes essential to quantify the
inequality gap. Fragility arises only from a certain alignment of the non-fixed points
of the systems, formalized through the prime property. Not all high ranked systems
are fragile, and combining systems need not result in fragile systems although rank is
increased. It is then a question as to whether or not it is possible to combine resilient
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systems to yield a fragile systems. To give insight into such a question, we note the
following:

Proposition 4.9.11. If w ∈ Wf+g, then w ≤ u+ v for some u ∈ Wf and v ∈ Wg.

Proof. As ¬w+ f + g = 1, it follows that f ∈ S¬w+g. Then there is a u ≤ f in Š¬w+g.
As ¬w + u+ g = 1, it follows that g ∈ S¬w+u. Then is a v ≤ f in Š¬w+u. Finally, we
have ¬w + u+ v = 1, therefore w ≤ u+ v.

Thus a weakness can only form when combining systems through a combination
of weaknesses in the systems. The implication is as follows:

Corollary 4.9.12. We have fra(f + g) ≤ fra(f) + fra(g).

Proof. For every w ∈ Wf+g, we have r(w) ≤ max(u,v)∈Wf×Wgr(u) + r(v) as w ≤ u+ v
for some u ∈ Wf and v ∈ Wg.

It is not possible to combine two systems with low fragility and obtain a system
with a significantly higher fragility. Furthermore, we are interested in the gap r(f +
g) − fra(f + g). If fra(f) ≥ fra(g), then r(f) − 2fra(f) is a lower bound on the
gap. One should be careful as such a lowerbound may be trivial in some cases. If P
is linearly ordered, then fra(f) = r(f) for all f . The bound in this case is negative.
However, if P is a Boolean lattice and µS = |S|, then r(f) − fra(f) may be in the
order of |P | = r(1) with fra(f) ≤ 2(− log |P |)/2r(f).

Other notions of resilience (eq. fragility) may be introduced. One notion can
consider a convex combination of the µ-rank of the k highest-ranked shocks failing a
system. The notion introduced in the chapter primarily serves to illustrate the type
of insight our approach might yield. Any function on the minimal shocks (failing a
system) is bound to translate to a dual function on weaknesses.

Remark

The statement of Corollary 4.9.12 may be perceived to be counterintuitive. This may
be especially true in the context of cascading failure. The statement however should
not be seen to indicate that the axioms defining a system and the dynamics preclude
interesting phenomena. Indeed, it is the definition of fragility (and specifically the
choice of the set of shocks over which we maximize) that gives rise to such a statement.
The statement does not imply that fragility does not emerge from the combination
of resilient systems, but only that we have a bound on how much fragility increases
through combinations. The statement should not also diminish the validity of the
definition of fragility, as it naturally arises from the mathematical structure of the
problem. Another, potentially more intuitive, statement on fragility may however be
recovered by a modification of the notion of fragility (or dually the notion of resilience)
as follows.

We have considered so far every system to be a possible shock. Variations on the
notion of resilience may be obtained by restricting the set of possible shocks. For
instance, let us suppose that only systems of the form sa : p 7→ p ∨ a with a ∈ P
are possible shocks. In the case of boolean lattices, these shocks can be interpreted
as initially marking a subset of components (or agents) as failed (or infected). These
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systems correspond, via their set of fixed-points, to the principal upper order filters of
the lattice P . The notion of resilience then relates to the minimum number of initial
failures (on the level of components) that lead to the failure of the whole system (i.e.,
all components). It is then rarely the case that two resilient systems when combined
yield a resilient system. Indeed, if a∨b = p̂ with a and b distinct from p̂, the maximum
element of P , then both sa and sb have some resilence. The system sa+sb has however
no resilience at all, as it maps every p to the maximum element p̂.

The space of possible shocks may be modified, changing the precise definition
of fragility and yielding different statements. In case there are no restrictions on
shocks, we obtain Corollary 4.9.12. We do not restrict shocks in the chapter, as a
first analysis, due to the lack of a good reason to destroy symmetry between shocks
and systems. The non-restriction allows us to capture the notion of a prime system
and attain a characterization of fragility in terms of maximal weaknesses.

4.9.5 Overview through an example (continued).

We continue the running example. The maximal weaknesses of the system f are the
maximal subsystems of f where the set of non-fixed points is closed under ∩. The
system f has two maximal weaknesses, represented as:

×

×◦◦

××◦

×

×

◦◦×

◦××

×

The left (resp. right) weakness corresponds to the system failing when A (resp.
C) is colored black. The left weakness is the map where A 7→ ABC leaving remaining
states unchanged; the right weakness is the map where C 7→ ABC leaving remaining
states unchanged. The system f then admits two corresponding minimal shocks that
fail it. Those are complements to the weaknesses in the lattice.

×

◦××

◦◦×

◦

◦

××◦

×◦◦

◦

The left (resp. right) minimal shock can be interpreted as initially coloring node
A (resp. node C) black.

For a counting measure µ, the µ-rank of f is 5, whereas the fragility of f is 3. The
resilience of f in that case is 4. For a system with non-trivial rules on the components,
the lowest value of fragility attainable is 1. It is attained when all the nodes have
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a threshold of 2. The highest value attainable, however, is actually 3. Indeed, the
system would have required the same amount of effort to fail it if all thresholds where
equal to 1. Yet changing all the thresholds to 1 would necessarily increase the µ-rank
to 6.

4.9.6 Recovery mechanisms and kernel operators.

Cascade effects, in this chapter, have been mainly driven by the axioms A.1 and A.2.
The axiom A.1 ensures that the dynamics do not permit recovery. Those axioms
however do not hinder us from considering situations where certain forms of recovery
are permitted, e.g., when fault-protection mechanisms are built into the systems.
Such situations may be achieved by dualizing A.1, and by considering multiple maps
to define our fault-protected system. Specifically, we define a recovery mechanism k
to be map k : P → P satisfying:

K.1 If a ∈ P , then ka ≤ a.

A.2 If a, b ∈ P and a ≤ b, then ka ≤ kb.

A.3 If a ∈ P , then kka = ka.

The axiom K.1 is derived from A.1 by only reversing the order. As such, a recovery
mechanism k on P is only a system on the dual lattice P op, obtained by reversing the
partial order. The maps satisfying K.1, A.2 and A.3 are typically known as kernel
operators, and inherit (by duality) all the properties of the systems described in this
chapter.

We may then envision a system equipped with fault-protection mechanisms as a
pair (k, f) where f is system in LP and k is a recovery mechanism, i.e., a system
in LP op . The pair (k, f) is then interpreted as follows. An initial state of failure is
inflicted onto the system. Let a ∈ P be the initial state. Recovery first occurs via the
dynamics of k to yield a more desireable state k(a). The dynamics of f then come
into play to yield a state f(k(a)).

The collection of pairs (k, f) thus introduce a new class of systems, whose proper-
ties build on those developed in this chapter. If the axiom A.3 is discarded, iteration
of maps in the form (fk)n may provide a more realistic account of the interplay of
failures and recovery mechanisms. In general, the map fk will satisfy neither A.1
nor K.1. A different type of analysis might thus be involved to understand these new
system.

Several questions may be posed in such a setting. For a design-question example,
let us consider P to be a graded poset. What is the recovery mechanism k of minimum
µ-rank, whereby f(k(a)) has rank (in P ) less than l for every a ∈ P with rank less
than l′? Other design or analysis questions may posed, inspired by the example
question. This direction of recovery however will not be further investigated in this
chapter.
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Remark

Another form of recovery may be achieved by removing rules from the system. Such
a form may be acheived via the · operator. Indeed, the system f · g is the most
undesireable system that includes the common rules of both f and g. If g is viewed
as a certain complement of some system we want to remove from f , then we recover
the required setting of recovery. The notion of complement systems is well-defined for
prime systems. For systems that are not prime, it may be achieved by complementing
the set of fixed-points, adding the maximum element p̂ and then closing the obtained
set under meets.

4.10 Concluding Remarks.

Finiteness is not necessary (as explained in Section 3) for the development. The
axioms A.1, A.2 and A.3 can be satisfied when P is an infinite lattice, and Φf (for
every f) is complete whenever P is complete. Nevertheless, the notion µ-rank should
be augmented accordingly, and non-finite component realizations should be allowed.
Furthermore, semimodularity on infinite lattices (still holds, yet) requires stronger
conditions than what is presented in this chapter on finite lattices.

Finally, the choice of the state space and order relation allows a good flexibility in
the modeling exercise. State spaces may be augmented accordingly to capture desired
instances. But order-preserveness is intrinsic to what is developed. This said, hints
of negation (at first sight) might prove not to be integrable in this framework.
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Chapter 5

On the abstract structure of the
behavioral approach to systems
theory

Abstract

We revisit the behavioral approach to systems theory and make explicit the abstract
pattern that governs it. Our end goal is to use that pattern to understand interaction-
related phenomena that emerge when systems interact. Rather than thinking of
a system as a pair (U,B), we begin by thinking of it as an injective map B →
U. This relative perspective naturally brings about the sought structure, which we
summarize in three points. First, the separation of behavioral equations and behavior
is developed through two spaces, one of syntax and another of semantics, linked by
an interpretation map. Second, the notion of interconnection and variable sharing is
shown to be a construction of the same nature as that of gluing topological spaces or
taking amalgamated sums of algebraic objects. Third, the notion of interconnection
instantiates to both the syntax space and the semantics space, and the interpretation
map is shown to preserve the interconnection when going from syntax to semantics.
This pattern, in its generality, is made precise by borrowing very basic constructs
from the language of categories and functors.
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5.1 Introduction

Our primary concern is studying and understanding phenomena or behavior that arise
from the interaction of several systems. We may describe the common situation of
interest as small entities of systems coming together, interacting, and producing, as
an aggregate, a behavior that would not have occurred without interaction. These sit-
uations are fundamental, and appear in countless settings, including contagion effects
in societal systems and cascading failure in infrastructures. But a viable understand-
ing of the emergent generated behavior ought to be preceded by an understanding of
what it means to interconnect systems and have them interact. The paper begins as
an attempt to grasp an understanding of interconnection.

The behavioral approach to systems theory, initiated by J. C. Willems in the 1980’s
proves to be a pedagogically responsible and natural approach to understanding inter-
connected systems. It provides, among other things, a sound inclusive definition of an
open system, one that interacts with its environment, and develops interconnection
through the natural notion of variable sharing. Rather than viewing a system as an
input/output device, the behavioral approach views a system as a set—termed, be-
havior—of trajectories or outcomes deemed allowable by the laws of a mathematical
model. Some of the theory’s distinctive flair may be sketched through three points.

i. Behaviors are described by equations—termed, behavioral equations—and dif-
ferent equations may describe the same behavior. Intrinsic systemic properties
then ought to be properties of the behavior, and not of the descriptive behavioral
equations.

ii. Many systems are not fundamentally input/output devices, and as such signal-
flow diagrams should not be natural as an interconnection construct. Instead,
systems are interconnected through the notion of sharing variables.

iii. Interconnecting systems on the behavior level via variable sharing coincides with
the descriptive interconnection of systems on the equational level. As Willems
very often stressed (see e.g., [Wil07]): “thinking of a dynamical system as a
behavior, and of interconnection as variable sharing, gets the physics right.”
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Our interest begins with the following questions. What is the abstract pattern
that makes this theory so natural? How can we mathematically abstract away that
pattern, simplify it, and use it in different settings?

Our approach, in answering those questions, consists of developing a relative point
of view. Instead of thinking of a system as a pair (U,B) with B ⊆ U, as done in the
behavioral approach, we first explicitly think of a system as an injective map B → U
for arbitrary pairs of B and U. This view leaves the definition of a system unchanged,
but it forces us to introduce transformations, or morphisms, of systems, so as to
relate the systems together. The analysis then proceeds naturally, and the findings
are summarized again in three points, to reflect those raised above:

i. The separation of behavioral equations and behavior suggests a development of
two spaces, one of syntactical objects (ref. the behavioral equations), and one
of semantical objects (ref. the behavior) linked by an interpretation map.

ii. The morphisms introduce a notion of subsystem and controlled-system. We
show that interconnection, as variable sharing, amounts to gluing two systems
on a common subsystem to yield a controlled-system. The intuition thus pro-
vided by the behavioral approach for interconnection through variable sharing
lies on the same level as that of gluing topological spaces or taking amalgamated
sums of algebraic objects.

iii. The notion of interconnection instantiates to both the syntax space and the
semantics spaces, and the interpretation map is shown to preserve the intercon-
nection when going from syntax to semantics.

The notion of interconnection in the behavioral approach is mathematically clear
when the behaviors live in the same universum. It is less clear what that notion
amounts to mathematically when the behaviors live in different universa. A recipe
for interconnecting systems in different universa exists, but it does not directly lend
itself to mathematical analysis. The key contribution lies in expressing the notion
of interconnection through the notion of a pushout. In a linear setting (e.g., in
linear systems), this will allow us to express interconnection of systems in terms
of exact sequences from commutative algebra. Phenomena that emerge from the
interaction of systems may then be seen to arise from a certain loss of exactness. We
refer the reader to [Ada17a] for more details. The point (ii) further shows a duality
between systems with latent variables on one end, and systems that are controlled on
another. Altogether, the abstract notions exhibited by the behavioral approach may
be instantiated to different settings. When those settings are interpreted as defining
systems, we recover the intuition provided by the behavioral approach.

We begin by a brief review of the essential features in the behavioral approach,
focusing particularly on three themes: the behavioral equations, variable sharing and
latent variables. We then perform our shift of view to systems being injective maps,
and revisit the three themes, highlighting the structure. The paper will introduce
very basic elements of the functorial language (i.e., the language of categories and
functors) along the way as needed. We finally end with a recap of the big picture,
and a sketch of where the work leads to.
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To dilute the abstraction, we will illustrate the claims by an example. The example
runs throughout the paper, and consists, at various stages, of an interplay between
two resistive circuits labelled (S) for series and (P ) for parallel.

(S) (P )

a c

b d f

e i

j

g

h

In functorial language, the behavioral approach suggests two categories, a syntax
category (e.g., reflecting the behavioral equations) and a semantics category (e.g.,
reflecting the behavior). The categories are linked via an interpretation functor. In-
terconnection (e.g., through variable sharing) in both categories consists of taking
pushouts or more generally colimits (or dually pullback/limits in the case of the be-
havioral approach). The interpretation functor preserves pushouts or more generally
colimits, and may be desired to admit a right adjoint (e.g., reflecting that every
behavior admits a simplest behavioral equation representation).

5.2 Jan Willems’ behavioral approach.

The behavioral approach to systems theory begins from the premise that a mathe-
matical model acts as an exclusion law. The phenomenon we wish to model produces
events or outcomes that live in a given set U. The laws of the model (viewed descrip-
tively) state that some outcomes in U are possible, while others are not. The model
then restricts the outcomes in U to only those that are allowed possible by the laws of
the model. The set of possible outcomes is then called the behavior of a model. We
refrain from using the term model, and replace it by system. Material in this section
may be found in [PW98], [Wil91] and [Wil07].

Definition 5.2.1 (cf. [PW98], Section 1.2.1). A Willems system is a pair (U,B)
where U is a set, called the universum—its elements are called outcomes—and B a
subset of U called the behavior.

The behavioral approach links naturally to standard ideas. A dynamical system
may be obtained by considering universa of the form WT, the set of maps from T
to W. The set T embodies the time axis, and WT then represents timed trajectories
taking values in W. An input-output structure can be recovered by thinking of a map
as a relation. Every set map f : A → B defines a relation R = {(a, fa)} ⊆ A × B
which yields a Willems system (A× B,R). The universa may also be endowed with
additional structure, e.g., a vector space structure. A Willems system (U,B) may
then be termed k-linear if U is a vector space over the field k, and B is a linear
subspace of U. Time invariance, among other things, for dynamical systems can be
further brought into the picture. We refer the reader to [PW98], [Wil91] and [Wil07]
for the details.
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Example 5.2.2. Considering the circuits (S) and (P),

(S) (P)

a R c

b d f

e i

j

g

h

we declare the variables in play to be the voltage potentials va, · · · , vj, one for each
labelled node, and currents iac, ibd, ieg, igi, igh, ifh, ihj, one for each consecutive pair of
labelled nodes. We define (US,BS) and (UP ,BP ) to be the Willems systems corre-
sponding to (S) and (P). The universum US is the free R-vector space (isomorphic
to R6) generated by the basis {va, vb, vc, vd, iac, ibd}. The behavior BS is the subset
{(Va, Vb, Vc, Vd, Iac, Ibd) ∈ US : Va − Vc = RIac and Vb = Vd}. Similarly, UP is the R-
vector space (isomorphic to R11) generated by the variables that remain. The behavior
BP is the subset of UP that satisfy KCL, KVL and Ohm’s law.

5.2.1 Behavioral equations.

Systems may be generally described by equations. The behavior then consists of the
outcomes for which balance equations are satisfied.

Definition 5.2.3 (cf. [PW98], Section 1.2.2). Let U be a universum, E a set, and
f1, f2 : U → E maps. The Willems system (U,B) with B = {u ∈ U : f1(u) = f2(u)}
is said to be described by behavioral equations and is denoted by (U,E, f1, f2). We
call (U,E, f1, f2) a behavioral equation representation of (U,B).

If both U and E share a linear structure (e.g., are vector spaces), then the behavior
of the representation (U,E, f1, f2) is the kernel of f1 − f2. In such a setting, we talk
about kernel representations of systems.

Systems are described in many situations using inequalities rather than equalities.
Such a change may be remedied by considering E to be ordered. For instance, if E is
a partially ordered set where every pair of elements (a, b) admit a least upper bound
max(a, b), then f(u) ≤ g(u) if, and only if, max(f(u), g(u)) = g(u).

A system (U,B) may have different behavioral equation representations of it.
It is then not the equations themselves that are essential, but rather the solution
to those equations. This remark is the basis for a separation between syntax and
semantics. The behavioral equations represent the syntax, while the semantics, the
objects behind the syntax, are captured by the behavior.

Example 5.2.4. The systems (US,BS) and (UP ,BP ) possess a linear structure. Both
BS and Bp are the solution set of a system of linear equations. We can then explicitely
define matrices (or linear maps) with the equations as rows, and obtain behavioral
equation representations of the two systems.
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5.2.2 Interconnection and variable sharing.

The behavioral approach enables us to define interconnections of systems. Let (U,B)
and (U,B′) be Willems systems with representations (U,E, f, g) and (U,E′, f ′, g′),
respectively. Their interconnection is the system represented by (U,E×E′, f×f ′, g×
g′).

Definition 5.2.5. The interconnection of (U,B) and (U,B′) is the system (U,B ∩
B′).

To interconnect two systems (V×U,B) and (U×V′,B′) that share only a part U
of their universa in common, we first lift them to two equivalent systems (V × U ×
V′,B × V′) and (V× U× V′,V× B′), and then intersect the lifted behaviors.

Definition 5.2.6. The interconnection of (V × U,B) and (U × V′,B′) by sharing U
is the system (V× U× V′,B × V′ ∩ V× B′).

Variable sharing thus consists of declaring parts of the universa as representing
the same outcomes, and carrying out the above procedure of identification. The
identification is the basis for the gluing mentioned in the introduction. Definition
5.2.6 provides a mean to interconnect systems in different universa. However, that
mean can be mathematically cumbersome. Part of the relative perspective to be
developed goes into making interconnection less cumbersome when different universa
are involved.

Example 5.2.7. We will interconnect (S) and (P) by connecting terminal c to e, and
d to f to obtain the circuit:

a

b d=f

c=e i

j

g

h

To perform the interconnection, we need to identify the variables vc, vd, iac and ibd
with ve, vf , ieg and ifh, respectively. The systems (US,BS) and (UP ,BP ) need to be
lifted to a common universum U, in accordance with Definition 5.2.6, where every
pair of the to-be-matched variables corresponds to the same dimension. The lifted
behavior are then intersected.

5.2.3 Latent variables.

The universum typically represents the variables that we wish to model. It is however
often the case that auxiliary variables are needed. Adding auxiliary variables might
lead to simpler behavioral equation representations. Interconnecting two systems that
live in different universa will also force us to add auxiliary variables. Latent variables
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of auxiliary interest are then appended to the universum of the original manifest
variables.

Definition 5.2.8 (cf. [PW98], Section 1.2.3). A Willems system with latent variables
is defined as a triple (U,Ul,Bf ) with U the universum of the manifest variables, Ul
the universum of latent variables and Bf ⊆ U × Ul the full behavior. It defines the
manifest Willems system (U,B) with B := {u ∈ U : (u, l) ∈ Bf for some l ∈ Ul}
where B is the manifest behavior. We call (U, Ul,Bf ) a latent variable representation
of (U,B).

Latent variables equip us with the extra flexibility needed in the modelling exer-
cise. The theory of latent variables will thereafter appear in the notion of subsystems.

Example 5.2.9. We may abstract the circuit (P) into a two-port blackbox, by declar-
ing the universum to consist of the voltage potentials and currents at the four terminals
e, f , i and j. The corresponding Willems system (Utwo−port,Btwo−port) consists of R8

as a universum, and the set of tuples in R8 that can physically coincide as the behav-
ior. We define Ul to be R3 generated by the variables vg, vh and igh. The Willems
system (UP ,BP ) is equivalent to (Utwo−port,Ul,BP ) and is then a latent variable rep-
resentation of (Utwo−port,Btwo−port).

5.2.4 The immediate mathematical structure.

Let U be a fixed universum, and suppose that every subset of U is a potential behavior.
We can partially order the behaviors in U by inclusion, and get a lattice LU. The meet
(min) in the lattice corresponds to set-intersection, and the join (max) corresponds
to set-union. Interconnection of systems corresponds then to taking meets in the
lattice. The properties of the lattice (as well as its existence) changes as different
mathematical structures are imposed on the universa and the behaviors. For instance,
if U is a vector space and the behaviors are the linear subspaces of U, then the lattice
of behaviors is modular. For a thorough study along those lines, we invite the reader
to look at [Sha01].

5.3 The relative point of view.

We bring about the abstract structure by adopting a relative point of view. Instead
of thinking of a system as a pair of sets (U,B) where B ⊆ U, we explicitly think of it
as an injective map B → U of sets.

Remark: We only consider, in this section, universa and behaviors that are
sets, without any additional structure. We can nevertheless equip the systems with
more structure (such as an R-module structure) while keeping the insight and the
result statements unchanged. We would however need to equip the set maps with
a compatible structure. For instance, in the case of R-modules, the set maps would
have to be replaced by R-linear maps.
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5.3.1 Morphisms of systems.

A system is then an injective map B → U of sets. We will keep the labels B and U ,
instead of using other letters, simply to make the connection explicit with the behav-
ioral approach as described. We will now revisit the above theory through the lens
of injective maps. However, the systems thus far, as simply a collection of injective
maps without any further structure, are unrelated. They cannot be interconnected
and we cannot discuss most of the themes addressed in the previous section. We
remedy this issue by defining a morphism of systems. The systems considered along
with their morphisms will provide us with a sandbox to develop the theory we want.

Definition 5.3.1. Let s : B → U and s′ : B′ → U ′ be two systems. A morphism φ
from s to s′ denoted by φ : s ⇒ s′ is a pair of set maps (φB, φU) with φB : B → B′

and φU : U → U ′ such that the diagram:

B
s−−−→ UyφB yφU

B′
s′−−−→ U ′

commutes, i.e., such that φUs = s′φB.

If idA denotes the identity map on the set A, then for every system B → U , the
pair (idB, idU) is a morphism of systems. Furthermore, morphism may be composed
component-wise to yield other morphisms. Indeed, if φ = (φB, φU) : s ⇒ s′ and
φ′ = (φ′B, φ

′
U) : s′ ⇒ s′′ are morphisms, then the composition φ′φ = (φ′BφB, φ

′
UφU) :

s⇒ s′′ is also a morphism.
Generally, given a diagram:

B
s−−−→ UyφB yφU

B′
s′−−−→ U ′

where s and s′ are injective, it follows that φB is just the restriction of φU onto B. If
either s or s′ were not injective, then φB is not necessarily the restriction of φU . We
cannot however always construct a commutative diagram by restricting an arbitrary
φU onto B, as the image φU(B) may fall outside B′. We can then do so (if and) only
if φU(B) ⊆ B′.

The idea of a morphism, in a different form, appears in [Fuh01] and [Fuh02]
through the notion of behavior homomorphism. Behavior homomorphisms were
partly introduced to assist in settling problems regarding equivalence of system rep-
resentations.

Subsystems and controlled-systems.

Introducing morphisms immediately introduces notions of a subsystem and a controlled-
system.
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Controlling the behavior of a system consists of restricting some of its potential
outcomes. As such if (U,B) and (U,B′) are Willems systems with B ⊂ B′, then B is
a controlled version of B′. Such a notion lifts naturally to the relative perspective.

Definition 5.3.2 (Controlled-system). Let φ : sctrl ⇒ s be a morphism of systems.
The pair (sctrl,φ) is said to be a controlled-system from s, if the components of φ are
injective maps. We may refer to sctrl as the controlled-system if φ is clear from the
context.

Example 5.3.3. The system underlying the circuit (Sc) can be seen as a controlled-
system from that of (S):

(Sc)

a c=d

b

Let sc : BSc → USc and s : BS → US be the systems of (Sc) and (S), respectively.
Then USc is the free R-vector space with basis {va′ , vb′ , vc′ , ia′c′ , ib′c′}. The set BSc is the
subset of USc whose tuples satisfy the laws of the circuit. The morphism φ : sc ⇒ s is
defined uniquely such that φU sends va′ , vb′ , vc′ , ia′c′ , ib′c′ in the basis of USc respectively
to va, vb, vc + vd, iac, ibd. The pair (sc,φ) is then a controlled-system from s.

Dually, a notion of subsystem, in the behavioral approach, is partially hinted at
from the theory of latent variables. It can be generally thought that a subsystem
of a big system consists of a projection of the big system onto only the variables of
interest. We arrive at the following observation:

Definition 5.3.4 (Subsystem). Let φ : s⇒ ssub be a morphism of systems. The pair
(ssub,φ) is said to be a subsystem of s, if the components of φ are surjective maps.
We may refer to ssub as the subsystem if φ is clear from the context.

Example 5.3.5. The system underlying the circuit (Ps) can be seen as a subsystem
of that of (P):

(Ps)

g’

h’

Let ps : BPs → UPs and p : BP → UP be the systems of (Ps) and (P), respectively.
Then UPs is the free R-vector space with basis {vg′ , vh′ , ig′h′}. The set BPs is the subset
of UPs whose tuples satisfy the laws of the circuit. The morphism φ : p⇒ ps is defined
uniquely such that φU sends vg, vh, igh in the basis of UP respectively to vg′ , vh′ , ig′h′,
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and everything else remaining in the basis of UP to 0. The pair (ps,φ) is then a
subsystem of p.

The use of these two notions will appear in the interconnection of systems. Infor-
mally, two systems are interconnected by gluing them along a common subsystem to
yield a controlled-system. This approach will embody the nature of variable sharing
stressed at by the behavioral approach.

Remark: Although we may think of the controlled-systems and the subsystems as
the domains or co-domains of the morphisms, the notion however is really embedded
in the morphism. Indeed, two different morphisms from s to ssub with surjective
components yield different subsystems.

Remark: The prefix sub of subsystem typically alludes to a possibility of em-
bedding. It seems counterintuitive that surjective maps rather than injective maps
are involved. Similarly, controlled systems would advocate identifying parts of the
system together as a means of control. This hints that surjectve maps rather than
injective maps are to be in play. Such an unease will be remedied in a future section,
by simply reversing the direction of the morphisms.

Recovering the fixed point of view.

To recover a fixed point of view, we fix the codomains of our systems. We allow only
systems of the form B → U for a fixed set U , and allow only degenerate morphisms
that only map U identically to itself. If s and s′ are two systems, we then define a
partial-order s ≤ s′ if, and only if, s factors through s′, i.e., s = s′h for some map h.
Note that if s = s′h and s is injective, then h is injective. If s = s′h and both s and
s′ are injective, then h is injective and unique. We then obtain a lattice isomorphic
to the lattice of behavior of the universum U . With a fixed universum, the system
B → U is a controlled-system from B′ → U if, and only if, B ⊆ B′. The notion of
subsystem, however, completely disappears. It appears in hidden form through the
theory of latent variables.

5.3.2 Revisiting: latent variables.

In this subsection, we establish that a Willems system (U,B) is a manifest system of
(U×Ul,Bf ) with latent variables if, and only if, B → U is a subsystem of Bf → U×Ul.

Proposition 5.3.6. Let s : B → U × Ul be a system, and consider a surjective map
U

π−→ U ′, then (up to isomorphism) there is a unique set B′ and a unique surjective
map p such that:

B
s−−−→ Uyp yπ

B′ −−−→ U ′

is a morphism of systems, i.e. is commutative with B′ → U ′ injective. Furthermore,
B′ is isomorphic to im(πs), the image set of πs.
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Proof. Every set map f : A → B has a unique factorization f = is where s is
surjective and i is injective. Indeed, let is and i′s′ be two factorizations, then is(A)
and i′s′(A) have the same cardinality. Since i and i′ are injective, then s(A) and
s′(A) have the same cardinality, and so are isomorphic. As sets, they are isomorphic
to im(f).

Specifying latent variables amounts to specifying a projection map U onto U′. In
particular, the surjective map U × Ul → U that forgets the components of Ul and
maps the components in U identically onto U automatically identifies the set Ul as
the universum of latent variables. This surjective map induces a unique subsystem
by projecting the full behavior onto the manifest behavior.

Corollary 5.3.7. Let s : B → U be a system, and π : U × Ul → U be the projection
onto the first coordinate (u, ul) 7→ u, then im(πs) = {b ∈ U : (b, l) ∈ B for some l}.

Every Willems system with latent variables uniquely defines its manifest system
as a subsystem. However some subsystems cannot be realized as a manifest system
of some Willems system of latent variables. The notion of subsystem then properly
subsumes the notion of latent variables.

Example 5.3.8. Referring back to the two-port blackbox abstraction of (P), recall that
Utwo−port is the free R-vector space with basis {ve′ , vf ′ , vi′ , vj′ , ie′ , ii′ , if ′ , ij′}. Define
the map φ : UP → Utwo−port to be the projection that sends ve, vf , vi, vj, ieg, igi, ifh, ihj
in the basis of UP respectively to ve′ , vf ′ , vi′ , vj′ , ie′ , ii′ , if ′ , ij′, and everything else re-
maining in the basis of UP to 0. The unique subsystem φ induced by a φU compo-
nent equal to φ has the system Btwo−port → Utwo−port as a codomain. It thus defines
(B2−port → U2−port,φ) as a subsystem of BP → UP .

Subsystems will have their use in interconnection of systems. We generally think
of the manifest variables as the variables that we wish to model, or rather that are
of interest. We may then think of them as being the variables of interest when it
comes to interconnecting two systems. More precisely, we can think of them as being
the variables that two systems will share. As a pick of variable (i.e., a projection)
directly induces a subsystem, we may think of interconnection as sharing a common
subsystem. The problem is that two systems may not share a common non-trivial
subsystem. There are many pairs of systems s and s′, where if φ : s ⇒ ssub and
φ : s′ ⇒ ssub are morphisms such that (ssub, φ) and (ssub, φ

′) are subsystems of s
and s′, then ssub is the trivial identity map over the set with one element. We can
however relax the notion of subsystem to that of a quasi-subsystem. Then every pair
of systems would share a non-trivial quasi-subsystem in common.

Definition 5.3.9 (Quasi-Subsystem). Let φ : s ⇒ sqsub be a morphism of systems.
The pair (sqsub,φ) is said to be a quasi-subsystem of s, if the second component φU
of φ is surjective. We may refer to sqsub as the quasi-subsystem if φ is clear from the
context.
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5.3.3 Revisiting: interconnection and variable sharing.

The behavioral approach encourages that systems be made from smaller pieces by
identifying variables together. We introduce a construct, termed category, to aid in
capturing the pattern of this idea. Our systems along with their morphisms will form
a category. The reason for introducing categories is that interconnection and variables
sharing amounts only to an instantiation of a general construction known as pullback.

Interlude on categories.

A category can be simply viewed as a directed multi-graph, where the arcs can be
composed associatively, and every node has a self-arc that produces no effect when
composed.

Definition 5.3.10 (Category). A category C consists of:

i. A class Obj(C) of objects.

ii. A set HomC(A,B) of morphisms for every ordered pair (A,B) of objects. A
morphism f in HomC(A,B) is denoted by f : A → B. If f : A → B is a
morphism, we refer to A and B as the domain and codomain of f .

iii. A composition map Hom(A,B)×Hom(B,C)→ Hom(A,C) for every ordered
triple (A,B,C) of objects. The composition of two morphisms f : A → B and
g : B → C is denoted by either g ◦ f or gf .

vi. An identity morphism idA ∈ Hom(A,A) for every object A.

This data is subject to two axioms:

A.1. For every f : A→ B, g : B → C and h : C → D, we have (f ◦g)◦h = f ◦(g◦h).

A.2. For every f : A→ B, we have f ◦ idA = idB ◦ f = f .

The primordial example of a category is the category Set where the objects are
sets, and morphisms are set functions. Other typical examples may include the cate-
gory of vector spaces (over a fixed field) with linear maps, the category of topological
spaces with continuous maps, the category of groups with group homomorphisms. On
a different end, every partially-ordered set forms a category by declaring the elements
of the set as the objects, and having Hom(A,B) contain exactly one morphism (and
none otherwise) if, and only if, A ≤ B in the partial order. Composition, in such
a case, reflects the transitive property. The presence of the identity arrow, reflects
reflexivity.

Proposition 5.3.11. The systems (i.e., the injective maps B → U) along with their
morphisms (defined in subsection 5.3.1) form a category.

Proof. The conditions were already verified in section 5.3.1.
We denote by System the category of systems whose objects are injective maps

B → U and morphims φ are defined in subsection 5.3.1.
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Back to interconnection.

We introduce a universal construction in general categories termed pullback (or
fibered-product). Once instantiated to our category System, it directly recovers
the notion of interconnection and variable sharing.

Definition 5.3.12 (Pullback). Let C be a category, and let f1 : A1 → B and f2 :
A2 → B be two morphisms in C with the same codomain. The pullback of (f1, f2)
consists of a triple (K, p1, p2) where K is an object of C and p1 : K → A1 and
p2 : K → A2 are morphisms such that f1p1 = f2p2 satisfying the following universal
property: for every other triple (H, q1, q2) such that q1f1 = q2f2, there is a unique
morphism h : H → K for which the following diagram commutes:

H

K A1

A2 B

q1

q2

h

p1

p2 f1

f2

.

We refer to K as the object of the pullback, denoted by A1 ×B A2.

If f1 : A1 → B and f2 : A2 → B are set maps in Set, then the pullback (K, p1, p2)
consists of K = {(a1, a2) ∈ A1 × A2 : f1a1 = f2a2}. We consider only the object
of the pullback in this paper, and generally forget about the remaining maps. The
definition of a pullback instantiates to System as:

Proposition 5.3.13. Let s : B → U , s′ : B′ → U ′ and sc : Bc → Uc be systems,
and let φ = (φB, φU) : s ⇒ sc and φ = (φ′B, φ

′
U) : s′ ⇒ sc be morphisms of systems.

Then s ×sc s′ is the system B∗ → U∗ where B∗ = {(b, b′) ∈ B × B′ : φBb = φ′Bb
′},

U∗ = {(u, u′) ∈ U × U ′ : φUu = φ′Uu
′} and the set map B∗ → U∗ is the restriction of

the product map s× s′ : B ×B′ → U × U ′ to the domain B∗.

Proof. Let s∗ be B∗ → U∗, and φ∗ : s∗ ⇒ s× s′ be the canonical controlled-system.
The pullback is (s∗, πsφ

∗, πs′φ
∗) where πs and πs′ are the projections from s × s′ to

s and s′ respectively. Commutativity of diagrams and the universal property can be
easily checked, and follow from the case of Set.

We return to variable sharing. Let s : B → U × Uc and s′ : B′ → U ′ × Uc be
two systems, and suppose we want to share the variables given by the universum Uc.
We then have projections p : U × Uc → Uc and p′ : U ′ × Uc → Uc. We pick (sc,φ)
and (sc,φ

′) to be two arbitrary quasi-subsystems of s and s′ respectively, where φU
and φ′U are p and p′ respectively. Such quasi-subsystems always exist. For instance,
we may trivially pick sc = idUc , φ = (ps, p) and φ′ = (p′s′, p′). The interconnected
system obtained by sharing the variables in Uc is then given by the pullback of φ and
φ′. Any pair of common quasi-subsystems, whose U components are p and p′, yields
the same interconnected system.
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Corollary 5.3.14. Let (sc,φ) and (sc,φ
′) be two quasi-subsystems of s : B → U×Uc

and s′ : B′ → U ′×Uc respectively. Suppose further that sc is a map Bc → Uc and that
φU and φ′U are the projections p : U×Uc → Uc and p′ : U ′×Uc → Uc. Then, the object
of the pullback of φ and φ′ represents the system B ×Bc B

′ → (U × Uc)×Uc (U ′ × Uc)
where the universum corresponds to U×Uc×U ′ and the behavior to B×U ′∩U×B′.

Example 5.3.15. We define sc to be id : Uc → Uc where Uc is the free R-vector space
with basis {vc=e, vd=f}. Let (sc,φ) and (sc,φ

′) be two quasi-subsystems of s : BS → US
and s′ : BP → UP respectively. The component φU is defined to send vc, vd in the
basis of US respectively to vc=e, vd=f , and everything else remaining in the basis of
US to 0. Similarly, the component φ′U is defined to send ve, vf in the basis of UP
respectively to vc=e, vd=f , and everything else remaining in the basis of UP to 0. The
system corresponding to the circuit:

a

b d=f

c=e i

j

g

h

is then the object of the pullback of φ and φ′.

If {∗} denotes the set with one element, then 1 = {∗} → {∗} is a system. Fur-
thermore, for every system s, the unique morphism s ⇒ 1 is a subsystem. In case
we pullback from s ⇒ 1 and s′ ⇒ 1, we are indicating that s and s′ are not sharing
any variables. The system we recover from their interaction is then simply the two
systems independently put together. The system we recover from the pullback is just
the product system s × s′ corresponding to the product of the universum and the
product of the behavior.

Important remark. Let φ : s ⇒ sc and φ : s′ ⇒ sc be two morphisms,
non-necessarily quasi-subsystems, and denote by (K, π, π′) the pullback of φ and φ′.
In that case, π and π′ are morphisms of systems, and we may form the morphism
π × π′ : K ⇒ s × s′. The pair (K, π × π′) will always be a controlled-system. Thus
variable sharing then consists of pulling back along a common quasi-subsystem to
yield a controlled-system on the product of the systems, i.e. on the separate systems
simply put next to each other.

Limits. In case we wish to interconnect more than two systems at a time, we can
generalize pullbacks to (projective) limit. Such a generalization will not be studied
in this paper.

5.3.4 Revisiting: behavioral equations.

Behavioral equations consists of two morphisms with the same domain and codomain.
The behavior they represent then corresponds to their equalizer.
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Definition 5.3.16 (Equalizer). Let C be a category, and f, g : A→ B two morphisms.
An equalizer of f and g is a pair (E, e : E → A) such that fe = ge and for every map
h : H → A such that fh = gh there is a unique map u : H → E such that h = eu.

Every pair of maps between two sets have an equalizer. It is the subset of A that
is sent to the same image in B by both maps. As such, the equalizer will always
be injective. We can immediately recognize that the behavior of the system is the
equalizer to the behavioral equations. Therefore:

Proposition 5.3.17. The triple (U,E, f1, f2) is a behavioral equation representation
of (U,B) if and only if (B,B → U) is the equalizer of f1 and f2.

However, more structure can be harvested. Let us define a category Equation of
behavioral equation representations. The objects of Equation are pairs (f1, f2) of set
maps U → E for every pair of sets U and E. A morphism ψ from (f1, f2) : U → E to
(g1, g2) : U ′ → E ′ is also a pair of maps (ψU , ψE) with the commutativity properties
ψEf1 = g1ψU and ψEf2 = g2ψU .

One should think of Equation as a category of syntax, i.e. of descriptions of
systems. This parallels System which acts as the category of semantics. Pullbacks in
the category Equation instantiates to constructing our systems syntactically. Indeed,
pullbacks in Equation consist of stacking the equations together while making sure
that common variables are well identified and taken care of. We will not flush out the
details of this. The two categories are related through the equalizer rule. We make
this precise by introducing the notion of a functor.

Interlude on functors.

A functor is a mapping that preserves the structure of a category. If categories
are viewed as directed multi-graphs, then functors are graph homomorphisms that
preserve composition and identity.

Definition 5.3.18. A functor F : C → D from a category C to a category D is
a rule that assigns an object F (C) of D to every object C of C, and a morphism
F (f) : F (C1) → F (C2) in D to every morphsim f : C1 → C2 in C. We require a
functor to preserve the identity morphisms, i.e., F (idC) = idF (C) and composition,
i.e., F (f ◦ g) = F (f) ◦ F (g).

Consider, as an example, the power-set functor that sends a set A to 2A its set
of subsets. It also sends functions A → B to functions 2A → 2B by mapping a
subset of A to its image set. It forms a functor from Set to Set. On a different end,
every order-preserving map between partially-ordered sets is a functor on the induced
categories.

Back to the behavioral equations.

Let Arr-Eq be the map that sends an object in Obj(Equation) to the morphism
component in its equalizer in Obj(System).

Proposition 5.3.19. The map Arr-Eq lifts to a functor from Equation to System.
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Proof. If (ψU , ψE) : (f1, f2)⇒ (g1, g2) is a morphism in Equation, we let Arr-Eq(ψU , ψE)
be the unique morphism φ : Arr-Eq(f1, f2)⇒ Arr-Eq(g1, g2) in System such that
φU = ψU .

The crucial property that connects syntax and semantics well is that Arr-Eq
preserves pullbacks. The semantics reflect interconnection in the syntax.

Proposition 5.3.20. Let ψ : e ⇒ ec and ψ′ : e′ ⇒ ec be morphisms in Equation,
then Arr-Eq takes the object of the pullback of (ψ,ψ′) to the object of the pullback
of (Arr-Eqψ,Arr-Eqψ′).

Proof. Let (e∗,ψ∗,ψ′∗) be the pullback of (ψ,ψ′). As equalizers preserve limits, and
in particular pullbacks, the domain B∗ of Arr-Eqe∗ coincides with the domain of the
object of the pullback of (Arr-Eqψ,Arr-Eqψ′). The codomains trivially coincide,
and are denoted by U∗. Finally there is a unique set map B∗ → U∗ ensuring that the
emerging diagram commutes.

We first illustrate with a clear example.

Example 5.3.21. We consider two resistors (R) and (R’), and define a syntactical
interconnection, on the level of behavioral equation representations.

(R) (R’)
a R b c R’ d

The universa UR and UR′ are the R-vector spaces with basis {va, vb, iab} and {vc, vd, icd},
respectively. A behavioral equation representation of (R) consists of a pair (fR, 0)
where fR : UR → R sends va, vb, iab to −1, 1, R respectively. Likewise, a behav-
ioral equation representation of (R’) consists of a pair (fR′ , 0) where fR′ : UR′ → R
sends vc, vd, icd to −1, 1, R′ respectively. Let R2 be the free R-vector space with ba-
sis {v, i} and let 02 : R2 → 0 be the zero map. We can uniquely define morphisms
ψ : (fR, 0) ⇒ (02, 02) and ψ′ : (fR′ , 0) ⇒ (02, 02) such that ψU : UR → R2 sends
va, vb, iab to 0, v, i and ψ′U : UR′ → R2 sends vc, vd, iab to v, 0, i. Pulling back along
ψ and ψ′ yields as object the pair (f, 0) : R4 → R2 which is a behavioral equation
representation for the series circuit once (R) and (R’) are interconnected at b and c.

We may now link to the running example:

Example 5.3.22. Let us suppose that R2 has basis {e1, e2}. A behavioral equation
representation of (S) can be identified with a linear map fS : US → R2, that sends
va, vb, vc, vd, iac, ibd to −e1,−e2, e1, e2,−Re1, 0. Clearly, the kernel of fS gives BS. Let
fc be the identity map id2 : R2 → R2. We may now construct the unique morphism
ψ : (fS, 0) → (id2, 0) such that ψE is the identity map. A behavioral representation
of (P) can be identified with a linear map fP : UP → R9, and a canonical morphism
ψ′ : (fP , 0) → (id2, 0) may be set up. The object of the pullback along ψ and ψ′

yields a behavioral equation representation of the interconnection of (S) and (T) by
identifying c with e and d with f .

Important Remark: It is very desirable that each system possesses a simplest
behavioral equation representation of it. The presented syntax category along with
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the Arr-Eq functor will not allow such a thing. Every system will have many be-
havioral equations attached to it, but no universal one. We can however get a much
better category and functor by working with generalized systems, where we drop the
injectivity condition on the maps B → U . Each generalized system then has a sim-
plest description to it. The new category preserves all the features described in this
section, but consists of a more involved construction. To preserve flow of the paper,
we present the desired category in an appendix section on generalized systems.

5.4 The big picture.

We constructed two categories. A category of syntax Equation, reflecting syntacti-
cal descriptions of systems through behavioral equations, and a category of semantics
System, reflecting the objects behind the equations, the behaviors. Those two cat-
egories are linked by an interpretation functor Arr-Eq that sends each description
to the underlying system it described. Interconnection of systems in System consist
of taking pullbacks. We uncovered a notion of (quasi-)subsystem, and a notion of
controlled-system. Indeed, variable sharing consists of pulling back along a shared
quasi-subsystem to get a controlled-system. Syntactical constructions in Equation
also consist of taking pullbacks. Finally, the interpretation functor Arr-Eq preserves
pullbacks, thus translating syntactical interconnection to semantical interconnection.

Throughout the development, sub-systems were identified with surjective maps,
and controlled-systems with injective maps. Such an association might seem unnat-
ural as we already described in subsection 5.3.1. Indeed, the prefix sub of subsystem
typically alludes to a part of bigger system, namely a possibility of embedding. It
then seems counter-intuitive that surjective maps rather than injective maps are in-
volved. Also, controlled systems lead us to think of identifying parts of the system as
a means of control. This identification is intuively percieved through surjective maps.
To recover a more intuitive association, we then only need to flip the direction of the
morphisms. Such a flip is discussed in the next sub-section.

5.4.1 The opposite approach.

Rather than thinking of a Willems system as a pair (U,B) with B ⊆ U, we will think
of it as a pair (2U, 2B), where 2S denotes the set of subsets of a set S. Then, from the
relative point of view, a system is no longer an injective map B → U , but a surjective
map 2U → 2B that sends S ∈ 2U to S ∩B. Such a consideration might seem absurd,
but it is equally valid and may appear to be more natural. Subsystems are now
associated with injective morphisms, and controlled-systems are now associated with
surjective morphisms. Overall, this transformation only reverses the direction of the
morphisms involved.

Let us define Bool to be the category whose objects are complete atomic boolean
lattices, and whose morphisms are the lattice homomorphisms. Every complete
atomic boolean lattice is isomorphic to 2S for some set S. We may then just consider
the objects as lattices of the form 2S for some set S. The categories Set and Bool
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may be related through two functors.

i. From Set to Bool. If f : S → T is a set map, then f−1 : 2T → 2S is a lattice
homomorphism. We denote by F : Set→ Bool the functor that sends S to 2S

and f : S → T to f−1 : 2T → 2S.

ii. From Bool to Set. If φ : 2T → 2S is a lattice homomorphism, then there exists
a unique map Gφ : S → T such that (Gφ)−1 = φ. Indeed, as φ{t} ∩ φ{t′} = ∅
for every t 6= t′ in T , every s belongs to a set φ{t} for a unique t. If the map
Gφ sends every s ∈ φ{t} to t, then (Gφ)−1 = φ. We denote by G : Bool→ Set
the functor that sends 2T to T and φ to Gφ as just described.

We make the relation between Bool and Set precise by defining the notion of an
opposite category.

Definition 5.4.1 (Opposite Categories). The opposite category Cop of C is the cate-
gory containing the objects of C, and a morphism f op : B → A for every f : A→ B
in C. If f op : B → A and gop : C → B are in Cop, then f op ◦ gop = (g ◦ f)op.

The notion of opposite categories, in general, allows us to dualize both definitions
and results.

Definition 5.4.2 (Pushouts). The pushout of f : A→ B and g : A→ C in C is the
pullback of f op and gop in Cop.

Definition 5.4.3 (Coequalizers). The coequalizer of f1 : A→ B and f2 : A→ B in
C is the equalizer of f op and gop in Cop.

The key fact is that Bool is equivalent Setop. Such a fact lifts to our category
of systems. We shall not formalize the term equivalent, but rather describe what it
entails for us. For all purposes, working in Bool is the same as working in Setop.
The functors F and G give us the mean to flip the arrows. The equivalence manifests
itself first in:

Proposition 5.4.4. A map f is injective (resp. surjective) in Set if, and only if,
Ff = f−1 is surjective (resp. injective) in Bool.

Proof. The result follows from the definition of F .
We can then define a category Bool-System to have, as objects, surjective

boolean lattice homomorphisms 2U → 2B. A morphism ψ in Bool-System is then
a pair of homomorphisms (ψU , ψB) such that the diagram:

2U
h−−−→ 2ByψU

yψB

2U
′ h′−−−→ 2B

′

commutes, i.e., such that h′ψU = ψBh.
Building on proposition 5.4.4, one can check that h (resp. Fs) is an object of

Bool-System if, and only if, Gh (resp. s) is an object of System. A morphsim
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ψ = (ψU , ψB) is a morphim of Bool-System if, and only if, Gψ = (GψB, GψU) is a
morphism of System. Most importantly:

Proposition 5.4.5. The bool-system (h, i, i′) is the pushout of ψ and ψ′ if, and only
if, (Gh,Gi,Gi′) is the pullback of Gψ and Gψ′.

Proof. As Bool is equivalent to Setop, the category Bool-System is equivalent to
the category Systemop. The result follows by definition.

We are only translating diagrams in System to diagrams in Bool-System with-
out losing any property at all.

A subsystem in Bool-System is then a morphism where both components are
injective. A controlled-system in Bool-System is then a morphism where both com-
ponents are surjective. A part of a universum is also now described as an embedding
(i.e., injection) rather than a projection (i.e., surjection). The intuition is thus reme-
died. One way to construct topological spaces consists of gluing simple ones together
by identifying subspaces. Such a construction is an instantiation of the pushout.
Similarly, we may construct complicated systems from simple ones, by identifying
subsystems together along a part of the universum, to get a controlled-system.

Discussion and Remarks.

A system restricts (or excludes) some outcomes from the universum to yield the be-
havior. The map 2U → 2B can then be seen as the object that encodes the ”restrictive
capability” of the system. It acts similarly to the equations defining a system, but
it is actually independent of the particular (behavioral) equation representation. A
rough analogy to this duality would be the duality between varieties and polynomial
ideals. The variety is a geometric object encoding the solution, and the polynomial
ideal (or the affine coordinate ring) is an algebraic object encoding the equations.

Furthermore, an epi from 2U to 2B induces a kernel (dual to a closure) operator
on the subsets of U. For every subset V of outcomes in U, a Willems’ system defines
which outcomes of V are possible. The behavior of the system can also be recovered
from B = Hom(2B, 2∗). A subsystem is then an objects that is a sub-restriction,
whereas a controlled system is an object that is a over-restriction. Again, the object
2U → 2B is independent of the particular syntax.

We believe this line of thought for the behavioral approach has been well treated
using D-module theory through algebraic analysis. The link will not be investigated
in this paper, we instead refer the reader to [Qua10] and [Obe90] for an initial thread.

5.4.2 How essential is the category System?

The systems in System are defined as injective maps B → U . We may just keep the
domain of the map, thus keeping only the behavior of the systems. We definitely lose
information. Indeed if B ⊂ U and B′ ⊂ U are distinct subsets of U , we will have
no way of distinguishing them in case they have the same cardinality if we forget the
map. Nevertheless, forgetting that information preserves constructions of systems,
i.e. pullbacks, and may be a valid definition of systems for some instances.
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This idea however suggests adding more information, rather than forgetting some,
for additional effects. Given that universa are relative, we may decide to make some
elements of the universa distinguished. We may further consider only sets with ad-
ditional structure, e.g. vector spaces or in general modules over rings. Those objects
inherit the same notion of interconnection, and a development may be carried out
along the same line as that carried out here. Thus, any content of the category is
valid, as long as we can have a good interpretation for it as a system. It will never-
theless make a technical difference. However, the intrinsic pattern of interconnection
and variable sharing, as well as the pattern of the other ideas we have described, will
remain unchanged.

Remark: Categories other than Equation may also act as a category of syntax.
Following the lines of the running example, we should expect circuit diagrams, if
formalized properly, to act as an alternative category of syntax, when our systems
are restricted to underly resistive circuits.

5.5 The concluding picture.

We abstract away to the following scheme:

System Syntax System Semantics
Interp

Constructions both in the syntax and semantics category consists of taking pushouts,
and the functor Interp preserves (or commutes with) pushouts. Pushouts may re-
place pullbacks, without loss of generality, by working with the opposite categories.
Pushouts may be generally replaced by colimits (or inductive limits), and then Interp
would then be required to preserve colimits. In general categories, the role played by
injective (resp. surjective) maps in Set will be played by monic (resp. epic) mor-
phism. Thus subsystems would correspond to monos, and controlled-systems to epis.
A mono A → B defines A as a subobject of B, while an epi B → C defines C as
a quotient-object of B. In general, additional properties would be required by the
monos and epis, e.g., regularity, to suit our needs. We refer to [ML98] for further
details on functorial matters.

The functor Interp is envisioned to have more properties than what will be ex-
plicitly mentioned in this paper. For instance, in our setting, every system admits
at least one behavioral equation representation, or description. It is very pleasing to
have every system have a simplest description. The syntax category thus provided
does not afford that. We may construct one that does by going to generalized systems.
When such a situation happens, Interp is said to have an adjoint.

5.5.1 In the case of partially ordered sets.

Every partially ordered set (termed poset) forms a category by declaring the elements
of the set as the objects, and having Hom(A,B) contain one morphism if, and only
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if, A ≤ B in the partial order. A functor between two categories induced by posets
is then only an order-preserving map.

We consider, in this subsection, only posets where every pair of elements admits
a least upper bound. The operation of taking least upper bounds can be declared
as a binary operation ∨, termed join. The algebras obtained are then termed join-
semilattices. Taking a pushout along two morphims (when posets are viewed as
categories) consists of taking the join (in the join-semilattice) of the their codomains.

We may then consider the categories System Syntax and System Semantics
to be induced by posets. The functor Interp is then an order-preserving map that
commutes with the join operation. If s ≤ s′, then s is a subsystem of s′ and s′ is
a controlled-system from s. We can acquire a physical interpretation if we consider
System Semantics to be the lattice of behaviors over a fixed universum.

5.5.2 Intended application.

We return to our main concern of uncovering phenomena that emerge from the in-
teraction of systems. A theory of interconnection cannot be enough to account for
interaction-related effects. Interconnecting two systems can only yield an intercon-
nected systems. Such effects may only emerge once we decide to focus on a feature
or a property of the system, that we term phenome.

We generally arrive at a phenome by forgetting, or concealing, information from
the system. We may then think of the phenome as a simplified system. Phenomes
then live in a category and inherit a notion of interconnection through pushouts. The
situation is summarized as:

Phenome System
Forget

Whether or not new phenomena emerge upon the interaction of systems is now en-
coded in the functor Forget. New phenomes can emerge precisely when the Forget
functor does not commmute with pushouts. Indeed, the irrelevant things that we
had forgotten actually come together and produce new observables. If Forget always
commutes with pushouts, then the phenome of the interconnected system is simply
the interconnection of the phenomes of the separate systems.

Example 5.5.1. We reconsider the circuits (S) and (P) and augment them with
external terminals:

(S)

a c

b d

i

j
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(P)

a

b f

e i

j

g

h

Each of the behavior underlying (S) and (P), when restricted to the variables va, vb,
vi and vj, consists of a four dimensional R-vector space. When we interconnect (S)
and (P) by identifying c to e and d to f , we obtain:

a

b d=f

c=e i

j

g

h

The behavior of the underlying interconnected system, restricted again to the variables
va, vb, vi and vj, now consists of a one dimensional R-vector space. The internal
mechanisms (declared internal by focusing only on the terminals a, b, i and j) in the
circuits interact so as to produce new observables.

Using methods from homological algebra, we can then relate the phenome of the
interconnected system to that of its subsystems, despite the presence of cascade-like
effets. We refer the reader to [Ada17a] for the details.

5.6 Appendix: Generalized systems.

Our systems were thus far injective set maps B → U . We may drop the injectivity
requirement and obtain the notion of a generalized system, which is only a set map.
We then establish a category Generalized-System of generalized systems whose
objects are set maps C → U , and morphisms φ between g : C → U and g′ : C ′ → U ′

are pairs of maps (φC , φU) such that the diagram:

C
g−−−→ UyφC yφU

C ′
g′−−−→ U ′

commutes, i.e., such that φUg = g′φC .
Given a generalized system g : C → U , we recover our regular interpretation of a

system by reading its image, i.e., the injective map g(C) → U . The rule mapping g
to g(C)→ U defines a functor from Generalized-System to System. Most of the
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notions defined earlier extend naturally to Generalized-System while remaining
intact on generalized-systems that are injective, i.e., the regular systems.

We now define our syntax category Generalized-Equation. The objects are
pairs φ1,φ2 : g → g′ of morphisms in Generalized-System with the same do-
main and codomain. A morphism from (φ1,φ2) to (ψ1,ψ2) consist of four set maps
τ1, τ2, τ3, τ4 such that the following diagram commutes for both values of i:

C U

D V

D′ V ′

C ′ U ′

φiC

τ1

g

φiU

τ2
h

ψi
D ψi

V

h′

g′

τ3
τ4

.

We may now define a functor Obj-Eq : Generalized-Equation→Generalized-
System that sends a pair φ1,φ2 : g → g′ to the object of its equalizer.

The objects of the category Equation can be found in Generalized-Equation
as follows:

Proposition 5.6.1. Let (φ1,φ2) be an object in Generalized-Equation, where φ1

and φ2 correspond to the following diagrams, respectively:

U U U U

E {∗} E {∗}

idU

f1 ∗

idU

f2 ∗

∗ ∗

.

Then Obj-Eq(φ1,φ2) is isomorphic to Arr-Eq(f1, f2).

The functor Obj-Eq is right adjoint to the diagonal functor that sends the
generalized-system g to the generalized-equation (idg, idg). Every system C → U
then has a universal description of the form:

C U C U

C U C U

g

idC idU

g

idC idU

g g

.

The functor Obj-Eq then preserves pullbacks, and more generally (projective) limits.
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Chapter 6

Interconnection and memory in
linear time-invariant systems

Abstract

We characterize the role played by memory when linear time-invariant systems in-
teract. This study is of interest as the phenomenon that occurs in this setting is
arguably the same phenomenon that governs cascading failure and contagion effects
in interconnected systems. We aim to later extend solutions presented in this chapter
to problems in other desired settings.

The characterization relies on basic methods in homological algebra, and is remi-
niscent of the rank-nullity theorem of linear algebra. Interconnection of systems is first
expressed as an exact sequence, then loss of memory causes a loss of exactness, and
finally exactness is recovered through specific algebraic invariants of the systems that
encode the role of memory. We thus introduce a new invariant, termed lag, of linear
time-invariant systems and characterize the role of memory in terms of the lag. We
discuss properties of the lag, and prove several results regarding the characterization.
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6.1 Introduction

Consider the following two discrete-time dynamical systems A and B given by the
difference equations:

(A) x[n] = y[n] + y[n− 1] and (B) y[n] = x[n].

The signals are real-valued and causal, i.e., x[n] = y[n] = 0 for n < 0. Although
the signals are labeled with matching letters, the systems A and B are distinct and
independent. We will be interconnecting them later on, and using matching letters
proves to be convenient. One may, although unnecessary, think of A (resp. B) as
having input y (resp. x) and output x (resp. y). Our goal is to understand the role
that memory plays when the systems A and B interact. This goal is of interest as
the phenomenon that occurs in this setting is arguably the same phenomenon that
governs cascading failure and contagion effects in interconnected systems. Solutions
to problems posed in this setting, with more work, will evolve to solutions to problems
in other desired settings.

We may devise a simple experiment to capture this role. We will quickly describe it
in a very informal manner, and then expound and formalize it afterwards throughout
this introduction. The experiment consists of two steps. In the first step, we allow A
and B to naturally interact, forming a combined system A&B, and then forget that
A&B has any capacity for memory, to get (A&B)mem. In the second step, we first
forget each of A’s and B’s capacity for memory, to get Amem and Bmem, and then
let the memoryless systems interact to form the combined system Amem&Bmem. We
now compare the combined system obtained through the two steps. If (A&B)mem and
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Amem&Bmem are the same system, then memory plays no role during interaction. If
they are not the same system, then memory certainly has its role.

Formally, suppose we keep from each of A and B only the set of pairs (x[0], y[0])
that can appear through trajectories satisfying the respective dynamics, i.e. the set
{(x[0], y[0]) : x[n] = y[n]+y[n−1]} from A and the set {(x[0], y[0]) : y[n] = x[n]} from
B. In doing so, we inherently forget (or destroy) all the potential a system possesses to
remember the past. Such a set would correspond to the memoryless system that can
best explain the trajectories of its respective system. The systems Amem and Bmem

may then be respectively identified with those two sets. In particular, the pairs that
appear in Amem correspond to pairs of the form (r, r) for r ∈ R. Those pairs generate
the trajectories coming from A if we assumed that A is memoryless, i.e. that A is
instead given by the equation x[n] = y[n] where y[n− 1] is dropped. Similarly, as B
is already memoryless, we also recover all pairs of the form (r, r) for r ∈ R. We now
interconnect A and B allowing them to interact by identifying signals together. In
our case, the signal x in A is identified with x in B, and y in A is identified with y in
B. We get the system A&B:

x[n] = y[n] + y[n− 1]

y[n] = x[n]

We see that no pair (x[0], y[0]) other than (0, 0) can be observed in A&B. Namely,
the system (A&B)mem corresponds to {(0, 0)}. However, the separate pieces Amem

and Bmem would have naively informed us to expect any pair (r, r) to be observed.
Indeed, the system Amem&Bmem corresponds to {(r, r) : r ∈ R}. This discrepancy
lets us conclude that memory plays at least some role. We may then ask ourselves:
how big of a role does it play? And, would an answer to such a question be even
useful in understanding the operation of the interconnected system?

Let BA and BB denote the behaviors of the systems A and B, namely the set of
trajectories (x, y) that are allowed through A and B respectively. If BA&B denotes
the behavior of A&B, then we have BA&B = BA ∩ BB, where ∩ is set intersection.
We are only casting the example into Jan Willems’ behavioral approach to systems
theory (see e.g., [PW98] and [Wil07]). If we define Φ(B) := {(x[0], y[0]) : (x, y) ∈ B}
to be the projection of B on time 0, we then get:

Φ(BA&B) 6= Φ(BA) ∩ Φ(BB).

The inequality points out to the discrepancy mentioned above. It thus lets us conclude
that memory plays at least some role. The extent of the role played by memory is
captured by how unequal the two sides are. Of course, in general, both A and B may
be arbitrary linear time-invariant systems.

The work in this chapter enables us to characterize how unequal those two sides
are, and link the quantity ΦBA&B to both ΦBA and ΦBB through such a character-
ization. The characterization relies on basic methods in homological algebra, and
is reminiscent of the rank-nullity theorem of linear algebra. Interconnection of sys-
tems is first expressed as an exact sequence, then destruction of memory causes a
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loss of exactness, and finally the inexact sequence is made exact via specific algebraic
invariants of the systems at hand.

As a follow up, the quantity ΦBA&B is necessarily a linear subspace of R2. We
know that it is the 0 subspace. It loses one dimension out of two from the fact that
BA and BB are the same and isomorphic to R. It loses the second dimension due to
memory. Let z−1x denote the shifted signal where z−1x[n] = x[n− 1]. If we consider
BA + BB = {tA + tB : tA ∈ BA, tB ∈ BB}, then ΦBA&B will lose its second dimension
because the linear space {t : z−1t ∈ BA + BB} has dimension 1 when quotiented by
BA + BB. We leave the justification for the content.

6.1.1 Why memory?

This effort falls within a grander effort to understand interconnection of systems and
the interaction-related phenomena such interconnections produce. The situation that
occurs when we forget memory is the same, on the appropriate abstract level, as the
phenomenon observed in contagion or cascading failure related problems. See for
instance Appendix 6.8 for one concrete example, and [Ada17c] for more details on
that example. Indeed the distinctive property of the phenomenon in such problems
can be cast into an inequality similar to that evoked above. All those problems share
the same abstract mathematical structure, and we aim to extend the methods and
solutions provided here to those settings. We refer the reader to [Ada17a] for more
details.

6.1.2 Why linear time-invariant systems?

We consider in this chapter only linear time-invariant systems for at least three rea-
sons. First, if some general theory were to be established, it would require a notion
of system and a notion of interconnection. In our linear world, those notions can
correspond perfectly to those advocated by the behavioral approach to systems the-
ory. This alleviates us from introducing new unfamiliar ideas on that front. Second,
linear time-invariant system are familiar objects, and it is our hope that the phe-
nomena presented (in terms of inequality) would not seem too elusive and can be
quickly made to be familiar. Our goal is to focus on the nature of the solution we get
in such problems. Third, homological algebra is done most directly through abelian
objects, e.g. vector spaces or abelian groups. Linear systems theory provide us with
such objects without much effort. The behaviors will be modules over rings of formal
power series.

6.1.3 Our contribution.

Our contribution is set to answer the following two questions. First, if we are to forget
a system’s capacity for memory, what piece of information (and in what form) should
we retain to characterize the role that would have been played by memory during
interaction? Second, how can we use that information to uncover memory related
phenomena that occur? The contribution may be summarized in three steps:
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i. We link interconnection of linear time-invariant systems to short exact sequences
of modules.

ii. We pin the elusive role played by loss of memory as a certain loss of exactness.

iii. We mend the loss of exactness by extracting algebraic objects from the systems,
and then constructing a long exact sequence.

The extracted algebraic objects are the pieces of information that encode the role
of memory during interaction. The long exact sequence then uses those algebraic
objects to relate ΦBA&B to both ΦBA and ΦBB. As the work aims to make sense of
the inequality:

Φ(BA&B) 6= Φ(BA) ∩ Φ(BB),

we introduce a new invariant, termed lag, of linear time-invariant systems and recover
an equality of the form:

(Φ(BA) ∩ Φ(BB))/Φ(BA&B) = lag(BA + BB)/(lag(BA) + lag(BB)).

We discuss properties of lag and prove several results related to the characterization.
One may, naturally, forget only delays of length at least T , by keeping only infor-

mation on signals up to time T − 1. Specifically, we keep, from A and B, the pairs
{(x[0, · · · , T − 1], y[0, · · · , T − 1])} instead of {(x[0], y[0])}. The same phenomenon
occurs, and the same techniques and solution apply.

6.2 Mathematical Preliminaries

We assume the reader is familiar with the notions of an abelian group and a com-
mutative ring with unit. Let R be a commutative ring with unit, denoted by 1. An
R-module is an abelian group (M,+) with an operation · : R ×M → M such that
+ and · distribute over each other, (rs) · m = r · (s · m) for r, s ∈ R and m ∈ M ,
and 1 ·m = m for all m ∈ M . If k is a field, then a k-module is a vector space over
k. Let M and N be R-modules, their direct sum M ⊕ N is the module consisting
of pairs (m,n) for m ∈ M and n ∈ N . The direct sum induces a canonical injection
i : M → M ⊕ N mapping m to (m, 0), and a canonical projection p : M ⊕ N → M
mapping (m,n) to m. A module is said to be free if it is a direct sum of copies of R.
If M is a module and r ∈ R an element, then rM = {rm : m ∈ M}. Let N be an
R-submodule of M , then the quotient module M/N is the module whose elements are
equivalence classes of the form m + N with m ∈ M . We refer the reader to [AM69]
for more details on modules and other algebraic concepts.

6.2.1 Important mathematical remark.

Two finite vector spaces having the same dimension are isomorphic. Indeed, if we
are given V and W with no additional linear maps either between them or linking
them to another vector space, then they are, for all purposes, essentially the same.
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However, if V and W have the same dimension and are both subspaces of U , they are
indeed isomorphic as vector spaces, but they need not be isomorphic as subspaces of
U. That is because we cannot find an invertible linear map f : V → W , such that
iwf = iv where iv : V → U and iw : W → U are the inclusion maps. Indeed, in
the case of subspaces, there is a means to distinguish them using the inclusion maps
into U . A choice of a basis for U , for instance, would helps us in doing so. Such a
remark also extends to the case of module. Most of the equalities in the chapter are
isomorphisms, and we should be careful as to what they imply.

6.3 Linear time-invariant systems.

We briefly review the behavioral approach to systems theory, and introduce our ob-
jects of study, the linear time-invariant systems.

6.3.1 Review of the behavioral approach.

Rather than viewing a system as an input/output device, the behavioral approach
views a system as a collection of trajectories allowed possible by the laws of a model.

Definition 6.3.1 (cf. [PW98], Section 1.2.1). A Willems system is a pair (U,B)
where U is a set, called the universum—its elements are called outcomes—and B a
subset of U called the behavior.

A system is made dynamical by considering universa of the form WT, the set of
maps from T to W. Linearity and time-invariance emerge when the universa and
the behaviors are endowed with a certain structure. We will be concerned, in this
chapter, with universa of the form WT where W is an n-dimensional vector space over
a field k, and T is the set of natural numbers.

6.3.2 Linear time-invariant systems.

We fix a field k throughout the chapter. The reader may wish to instantiate k to
being, for instance, either Q, R, C or any finite field. We define R to be the ring
k[[z−1]] of formal power series in the variable z−1 with coefficients in k. The elements
in R are series of the form:

∞∑
i=0

aiz
−i, with ai ∈ k. (6.1)

The series in (6.1) ought to be interpreted as a discrete-time signal taking value ai in
k at time i. Addition in R is given by pointwise addition:∑

i

aiz
−i +

∑
i

biz
−i =

∑
i

(ai + bi)z
−i,
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and multiplication is given by convolution:

(
∑
i

aiz
−i)(

∑
i

biz
−i) =

∑
i

(a0bi + · · ·+ aib0)z−i.

Definition 6.3.2. A linear time-invariant system (abreviated LTI system) is pair
(U,B) where U is the free R-module Rn of dimension n, and B is an R-submodule
of U.

The system (U,B) is linear as αs+α′s′ ∈ B for every α, α′ ∈ k and s, s′ ∈ B. The
system (U,B) is time-invariant as z−1s ∈ B for every s ∈ B.

Proposition 6.3.3. The system (U,B) is a linear time-invariant system if, and only
if, U = Rn and B = ker(f) where f : U→ E is a linear map for some R-module E.

Proof. Every injective map is the kernel of some map, e.g. its cokernel.

Every system then admits at least one kernel representation. Of course, different
maps may yield the same system.

Definition 6.3.4. Let (U,B) and (U,B′) be LTI systems with kernel representation:

B = ker(f : U→ E) and B′ = ker(f ′ : U→ E ′).

Their interconnection is the LTI system (U,B ∩ B′) with kernel representation:

(f, f ′) : U→ E ⊕ E ′.

It can be the case that E is of the form Rm. (This is, however, not always
possible.) As U and E are free R-module of finite dimension, each admits a finite
basis. We may then fix a basis for each, and represent the map f through an n×m
matrix with coefficients in R.

Example. Recall our running example:

(A) x[n] = y[n] + y[n− 1] and (B) y[n] = x[n].

The universum U is R2, and the systems (U,BA) and (U,BB) have, respectively,
matrix representations:

A :=
[
1 −1− z−1

]
and B :=

[
1 −1

]
. (6.2)

The behaviors BA and BB are the submodules of U generated by (1+z−1, 1) and (1, 1),
respectively.

We begin by considering only systems that live in the same universum, and gen-
eralize to systems living in different universa near the end of the chapter.
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6.3.3 Memoryless LTI systems.

A memoryless system is a system where time does not affect, or restrict, the trajecto-
ries. The allowable trajectories can be shifted back in time and can be patched freely
together.

Definition 6.3.5. An LTI system (U,B) is said to be memoryless when:

i. if z−1s ∈ B then s ∈ B.

ii. if
∑∞

i=0 aiz
−i ∈ B, then

∑T
i=0 aiz

−i ∈ B for all T .

The memoryless system (U,Bmem) derived from (U,B) is the memoryless system
we get by destroying from (U,B) any capacity it has to remember the past.

Definition+Proposition 6.3.6. The behavior of the memoryless system (U,Bmem)
derived from an LTI system (U,B) is the R-submodule Bmem of U generated by the
signals a0 ∈ kn ⊂ U where a0 + z−1s ∈ B for some s ∈ U.

Notice that a behavior Bmem when U = Rn, in addition to having a R-module
structure, can be regarded as a k-vector subspace of kn.

Example. The systems in the running example have as (BA)mem = (BB)mem the
R-module spanned by (1, 1), or equivalently the subspace of k2 spanned by (1, 1).

6.3.4 Some theorems on R-modules.

We will be only concerned with modules over R = k[[z−1]] in this chapter. Most of
the results throughout the chapter generally hold for rings that are principal ideal
domains, such as the ring Z of integers, and the polynomial ring k[x]. A ring is said
to be a principal ideal domain if the product of two non-zero elements is non-zero,
and every ideal is generated by a single element.

Recall that a module is said to be free if it is a direct sum of copies of R.

Proposition 6.3.7. Let M be a free R-module. If N is a submodule of M , then N
is free. If dim(N) denotes the dimension of N , then dim(N) ≤ dim(M).

Proof. See e.g. [Lan02] Ch. III Theorem 7.1.

An LTI system (U,B) is then composed of two free R-module. To capture the role
of memory, we will need torsion in our modules. As such, we will mostly be working
with the module U/B derived from a system (U,B). Such modules are very general:

Proposition 6.3.8. Every finitely generated R-module is of the form U/B for some
free module U of finite dimension and a submodule B.

Proof. An R-module module M is finitely generated if it has a finite number n of
generators. There then exists a surjective linear map Rn → M . The module M is
then the cokernel of the kernel B of the map f , namely of the form Rn/B.

The following characterization will be useful in clarifying the ideas.
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Proposition 6.3.9. Let M be a finitely generated R-module, then there exists an
integer m and elements s0, · · · , sl ∈ R such that:

M = Rm ⊕R/(s0R)⊕ · · · ⊕ R/(slR).

The elements s0, · · · , sl can be chosen so that they are powers of primes in R.

Proof. See e.g., [Lan02] Ch. III Theorem 7.3 and Theorem 7.5, combined.

The submodule Rm is known as the free submodule of M , while R/(s0R)⊕ · · · ⊕
R/(slR) is known as the torsion submodule of M .

Example 1. For instance, both U/BA and U/BB, in our running example, are iso-
morphic to R.

Note that a module may admit multiple factorizations of the above form, as for
instance:

R/((z−2 + z−1)R) = R/(z−1R)⊕R/((z−1 + 1)R)

The proposition 6.3.9 can be further strengthened, but will be enough for our pur-
poses. As we shall see, the dimension of Bmem derived from (U,B) will be n−m− d
where m is the dimension of the free submodule of U/B, and d is dimension the largest
submodule of U/B isomorphic to a direct sum of modules of the form R/(z−iR).

6.4 The role of memory.

Given two systems (U,B) and (U,B′), our experiment tells us that the role played by
memory during their interaction appears through the inequality:

(B ∩ B′)mem 6= Bmem ∩ B′mem.

Example 2. For instance, our running example has (BA)mem ∩ (BB)mem as the sub-
space of k2 generated by (1, 1), however (BA ∩ BB)mem is the 0 vector space.

The goal is to quantify the inequality and cope with it. How can we non-trivially
relate (B∩B′)mem to B and B′? We can then characterize the role played by memory,
and understand its effects.

6.4.1 Interconnection and exact sequences

The notion of exact sequence is crucial. Interconnection of systems can be first ex-
pressed as an exact sequence. Loss of memory will then cause a loss of exactness.
Finally, the memoryless interconnected system will be related to its separate compo-
nent systems through exact sequences.

Definition 6.4.1. A sequence of R-modules Mi and R-modules homomorphisms fi

· · · −−−→ Mi−1
fi−−−→ Mi

fi+1−−−→ Mi+1 −−−→ · · ·
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is said to be exact at Mi if im fi = ker fi+1. The sequence is called an exact sequence
if it is exact at every Mi.

Let N ⊆ N ′ be submodules of M . The inclusion map f : N → N ′ induces a linear
map g : M/N → M/N ′. The map g is surjective as f is injective. In particular, if
(U,B) and (U,B′) are LTI systems, we then obtain four canonical surjective maps:

p : U/(B ∩ B′)→ U/B p′ : U/(B ∩ B′)→ U/B′

q : U/B → U/(B + B′) q′ : U/B′ → U/(B + B′)

Proposition 6.4.2. If (U,B) and (U,B′) are LTI systems, then the sequence:

0 −−−→ U/(B ∩ B′) (p,p′)−−−→ U/B ⊕ U/B′ q−q′−−−→ U/(B + B′) −−−→ 0

is exact.

Proof. Construct a commutative diagram:

0 0 0

0 B ∩ B′ B ⊕ B′ B + B′ 0

0 U U⊕ U U 0

0 U/(B ∩ B′) U/B ⊕ U′/B′ U/(B + B′) 0

0 0 0

The top two rows are exact. Either apply the nine-lemma (or the 3 × 3 lemma, see
e.g. [Wei95] Ch. 1 Exercise 1.3.2) to get that the bottom row is exact, apply the
Snake lemma (see later Proposition 6.4.6) on the top two rows.

To clarify, the linear map q − q′ sends (s, s′) ∈ U/B ⊕ U/B′ to q(s) − q′(s′) ∈
U/(B + B′). Thus to be notationally precise, the map q − q′ should be denoted as
qπ − q′π′ for some projections π and π′.

Example 3. If U = Rn and S ⊂ U, then we denote by 〈S〉 the R-submodule of
U generated by the elements in S. The exact sequence, resulting from our running
example, can be explicitly expressed as:

0 −→ U/〈0〉 (0,0)−−→ U/〈(1, 1)〉 ⊕ U/〈(1, 1 + z−1)〉 q−q′−−→ U/〈(1, 1), (0, z−1)〉 −→ 0

Note that {(1, 1), (1, 1 + z−1)} and {(1, 1), (0, z−1)} generate the same submodule.
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Of course, the sequence:

0 −−−→ B ∩ B′ −−−→ B ⊕ B′ −−−→ B + B′ −−−→ 0

is also exact. The main issue is that the modules in that sequence are always free
modules. We will need to consider instead the exact sequence of quotients, generally
not consisting of free modules. As we mentioned, we will need to use the torsion that
comes from the quotients to capture the loss of memory.

6.4.2 Loss of memory and loss of exactness

Let (U,B) be an LTI system. Recall that (kn,Bmem) (or equivalently (U,Bmem)) is
the memoryless system derived from (U,B). Precisely, we have:

Bmem := {s0 ∈ kn : s0 + z−1s ∈ B for some s ∈ U}.

Let M be an R-module, we define the R-module:

ΦM := M = M/(z−1M).

The elements of ΦM are the equivalence classes of M , where s and s′ belong to the
same equivalence class if, and only if, s− s′ ∈ z−1M . The module ΦM is obtained by
tensoring M with R/z−1R. We briefly discuss this connection later on in the chapter.

Proposition 6.4.3. If (U,B) is an LTI system, then Φ(U/B) = kn/Bmem.

Proof. We have:

Φ(U/B) = (U/B)/z−1(U/B) (by definition)

= (U/B)/
(
(B + z−1U)/B

)
= U/(B + z−1U) (by the third isomorphism theorem)

= kn/Bmem.

The second equality (isomorphism) follows from z−1(u+B) = z−1u+B ∈ (B+z−1U)/B
whenever u+ B ∈ U/B. (See e.g. [AM69] Ch. 2 p. 18 for more information, and the
proof of Corollary 2.7 for a use of this fact.)

As both kn and Bmem are k-vector spaces, we have:

kn = Bmem ⊕ kn/Bmem.

Thus, characterizing Bmem is equivalent to characterizing kn/Bmem.
The operation Φ may also be lifted to linear maps. Indeed, let f : M → N be a

linear map, then we may define Φ(f) : Φ(M)→ Φ(N) to be the map:

Φf : s+ z−1M 7−→ f(s) + z−1N for s ∈M
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Given an exact sequence, we may then apply Φ to both the objects and the morphisms
to get another sequence. The key point of the chapter is that the act of destroying
memory does not behave well under interconnection, and will cause a loss of exactness.
Indeed:

Proposition 6.4.4. If 0→M →M ′ →M ′′ → 0 be an exact sequence of R-modules,
then the sequence 0→ ΦM → ΦM ′ → ΦM ′′ → 0 is always exact at ΦM ′ and ΦM ′′.

Proof. Notice that ΦM = M ⊗ R/z−1R, and see e.g., [AM69] Ch 2 Proposition
2.18.

However:

Proposition 6.4.5. The map Φ does not always send injective linear maps to injec-
tive linear maps. In particular, the sequence 0 → ΦM → ΦM ′ → ΦM ′′ → 0 is not
always exact at ΦM .

Proof. See e.g., the example below.

Exactness is lost on the left precisely when memory plays a role in our experiment.

Example. Returing to our running example, the sequence:

0→ ΦU/(BA ∩ BB)→ k ⊕ k → k → 0

cannot be exact at ΦU/(BA∩BB), as that would imply ΦU/(BA∩BB) to be k. We know
however that ΦU/(BA∩BB), is not k but is isomorphic to k2. Indeed, (BA∩BB)mem =
0.

Our goal is to figure out a way to recover the loss.

6.4.3 Recovering exactness

We will recover the loss of exactness through the use of the snake lemma:

Proposition 6.4.6 (Snake Lemma, e.g., [AM69] ch. 2, p. 22, proposition 2.10).
Given a commutative diagram of R-modules with exact rows,

0 −−−→ M
f−−−→ N

g−−−→ P −−−→ 0ym yn yp
0 −−−→ M ′ f ′−−−→ N ′

g′−−−→ P ′ −−−→ 0

we get an exact sequence:

0 −→ kerm
f̃−→ kern

g̃−→ ker p
δ−→ cokerm

f̄ ′−→ cokern
ḡ′−→ coker p −→ 0.

Proof. The lemma is standard, and its proof may be found in many texts, e.g., [AM69]
ch. 2, proposition 2.10.
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The snake lemma enables us to relate cokernels of maps to their kernels through
a long exact sequence. When the objects in an exact sequence are vector spaces, we
may directly further express elements of it through others.

Proposition 6.4.7. If the sequence of vector spaces:

0 −→ V0 −→ V1
f−→ V2 −→ V3 −→ V4

g−→ V5 −→ 0,

is exact, then V0 = ker f and V3 = coker f ⊕ ker g.

Proof. The following sequence is exact:

0→ im(V1 → V2)→ V2 → im(V2 → V3)→ 0

We have im(V1 → V2) = V1/ ker(V1 → V2). As ker(V1 → V2) = im f by exactness of
the six-term sequence, we get that im(V1 → V2) = coker(f). By exactness, we also get
im(V2 → V3) = ker g. Finally, short exact sequence of vectors spaces split. Namely,
if 0→ U → V → W → 0 is a sequence of vector spaces, then V = U ⊕W .

To make use of lemmas, notice that:

ΦM = coker(M
z−1

−−→M).

We can then construct a commutative diagram with exact rows:

0 −−−→ U/(B ∩ B′) (p,p′)−−−→ U/B ⊕ U/B′ q−q′−−−→ U/(B + B′) −−−→ 0yz−1

yz−1

yz−1

0 −−−→ U/(B ∩ B′) (p,p′)−−−→ U/B ⊕ U/B′ q−q′−−−→ U/(B + B′) −−−→ 0

Let M be an R-module, we define the R-module:

HM := ker(M
z−1

−−→M).

The operator H can also be lifted to linear maps. Indeed, let f : M → N be a linear
map, we define H(f) : H(M)→ H(N) to be the restriction of f to H(M).

Proposition 6.4.8. If (U,B) and (U,B′) are LTI systems, we get an exact sequence:

0 −→ H(U/(B ∩ B′)) H(U/B)⊕H(U/B′) H(U/(B + B′))

Φ(U/(B ∩ B′)) Φ(U/B)⊕ Φ(U/B′) Φ(U/(B + B′)) −→ 0

(H(p),H(p′)) H(q)−H(q′)

(Φ(p),Φ(p′)) Φ(q)−Φ(q′)

Proof. Apply the Snake lemma (Proposition 6.4.6) to the obtained ladder diagram.
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Furthermore:

Theorem 6.4.9. We have:

Φ(U/(B ∩ B′)) = ker(Φ(q)− Φ(q′))⊕ coker(H(q)−H(q′))

and:
H(U/(B ∩ B′)) = ker(H(q)−H(q′))

Proof. Combine Proposition 6.4.8 and Proposition 6.4.7.

The space ker(Φ(q)−Φ(q′)) reflects what comes from the interaction of the memo-
ryless systems. The space coker(H(q)−H(q′)), on the other hand, captures the effect
of memory on the interconnected memoryless system.

Example 4. In our running example, both H(U/BA) and H(U/BB) will be the 0
vector spaces, and both H(q) and H(q′) will be the 0 maps. We then get:

coker(H(q)−H(q′)) = H(U/(BA + BB)) and ker(H(q)−H(q′)) = 0

6.5 Interpreting the recovery.

Theorem 6.4.9 in the previous section leaves us with three expressions:

ker(Φ(q)− Φ(q′)) coker(H(q)−H(q′)) ker(H(q)−H(q′))

to thoroughly interpret. We interpret them, and proceed to elucidate the operator H.

Definition 6.5.1. Let N be a submodule of M , we denote by zN the module:

zN := {s ∈M : z−1s ∈ N}.

The notation zN does not explicitly refer to M , however, in all its usage, the
module M will be clear from the context.

Remark. The element z−1 ∈ R does not have an inverse in R. The letter z
is undefined and is not an element of R. In other words, we cannot multiply signals
by z in the ring. The notation zN is intended to divide signals in N by z−1 only if
possible, as if we fictively multiplied them by z.

6.5.1 Elements of the long exact sequence.

Our experiment tells us that memory plays a role in the interaction, when:

(B ∩ B′)mem 6= Bmem ∩ B′mem.

First, the interaction of the memoryless systems is captured through:

176



Proposition 6.5.2. We have:

ker(Φ(q)− Φ(q′)) = kn/(Bmem ∩ B′mem).

Proof. The map Φ(q) is the canonical map kn/Bmem → kn/(Bmem+B′mem). A similar
fact holds for Φ(q′). The sequence:

0→ kn/(Bmem ∩ B′mem)→ kn/Bmem ⊕ kn/B′mem
Φ(q)−Φ(q′)−−−−−−→ kn/(Bmem + B′mem)→ 0

is then exact.

Recall that H(M) = ker(M
z−1

−−→M), then:

Proposition 6.5.3. We have H(U/B) = zB/B where zB = {s ∈ U : z−1s ∈ B}.

Proof. If s + B ∈ U/B, we then have: z−1(s + B) = B if, and only if, z−1s ∈ B. Of
course, z−1(s+ B) = B if, and only if, s+ B ∈ H(U/B).

The role of (the destroyed) memory in the interaction is then captured through:

Proposition 6.5.4. We have:

coker(H(q)−H(q′)) = z(B + B′)/(zB + zB′).

Proof. We have im(H(q) − H(q′)) = (zB + B′)/(B + B′) + (B + zB′)/(B + B′) =
(zB + zB′)/(B + B′). The rest follows by the third isomorphism theorem.

The space z−1(B + B′)/(z−1B + z−1B′) is a k-vector space isomorphic to:

I := {0} ∪ {a ∈ kn : there exists (s, s′) ∈ B ⊕ B′ with s[0] = s′[0] = a

such that for every (t, t′) ∈ B ⊕ B′ with t[0] = t′[0] = 0, s+ t 6= s′ + t′}.

when viewed as a subspace of kn. We then get a ∈ I if, and only if, a ∈ Bmem ∩B′mem
but there exists no s ∈ B ∩ B′ with s[0] = a. We can thus recover:

(B ∩ B′)mem = (Bmem ∩ B′mem)/I.

Or equivalently, we have:

(Bmem ∩ B′mem)/(B ∩ B′)mem = z(B + B′)/(zB + zB′).

A close look at the equation reveals a duality between Bmem and zB (or more precisely,
zB/B).

Corollary 6.5.5. We thus get:

U/(B ∩ B′)mem = U/(Bmem ∩ B′mem)⊕ z(B + B′)/(zB + zB′).

Proof. Immediate from Theorem 6.4.9.
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Finally, the role that memory could potentially play in the new interconnected
system consists of:

Proposition 6.5.6. We have:

ker(H(q)−H(q′)) = (zB ∩ zB′)/(B ∩ B′).

Proof. The statement follows from zB ∩ zB′ = z(B ∩ B′) and Theorem 6.4.9.

6.5.2 The functorial nature of Φ and H.

The operators Φ and H act both on R-modules and on R-linear maps. They send
R-modules to R-modules and R-linear maps to R-linear maps. The operators Φ and
H are usually termed functors, as they satisfy two properties:

i. If f : M → N and g : N → P are R-linear maps, then Φ(f ◦ g) = Φ(f) ◦ Φ(g)
and H(f ◦ g) = H(f) ◦H(g)

ii. If id : M → M is the identity map on M , then both Φ(id) and H(id) are the
identity maps on Φ(M) and H(M).

The functor Φ consists of tensoring a module with R/z−1R. Given a cyclic fac-
torization (cf. Proposition 6.3.9) of a module M , the module Φ(M) is isomorphic to
(R/(z−1R))m where m is the number of factors of the form either R or R/(z−iR).
The functor H will be seen to send M to the set of linear maps hom(R/z−1R,M)
from R/z−1R to M . Both of those operators can be seen to lift to linear maps.

Taking tensor products, e.g., Φ, is known to be right-exact, but not generally
left-exact. In other words, Φ preserves exactness of an exact sequence on the right,
but not necessarily on the left. Equivalently, Φ generally fails to send injective maps
to injective maps. The fact that it fails to be left-exact is the reason why memory
could potentially play a role. The functor H is termed the first-order left derived
functor of Φ, and is interpreted in measuring by how much exactness is lost. There
are principled techniques to define derived functors, for instance through projective
resolutions. Those methods are outside the scope of the chapter, but in our setting,
they reduce to our direct approach through the use of the snake lemma.

6.5.3 The lag of an LTI system.

The operator H while acting on U/B, can be singled out as an invariant—termed, the
lag—of a linear time-invariant system.

Definition 6.5.7. The lag of lag(U,B) an LTI system (U,B) is defined to be H(U/B) =
zB/B.

Elements in the lag correspond to classes of signals that only appears delayed in
the system. If hom(M,N) denotes the (abelian) group of linear maps from M to N ,
then:

Proposition 6.5.8. We have H(U/B) = hom(R/(z−1R),U/B).
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Proof. A linear map from R/(z−1R) ' k to U/B is an element s of U/B such that
z−1s = 0 in U/B.

The space H(M) is a submodule of M . The operator H maps R/sR to its unique
submodule R/z−1R if s ∈ z−1U and to 0 otherwise. Furthermore, H commutes
with direct sums, i.e., H(M ⊕ N) = H(M) ⊕ H(N). Thus, given a presentation of
a module U/B, the functor H keeps one R/z−1R for every factor in the form R/sR
where s ∈ z−1U.

Proposition 6.5.9. If (U,B) is an LTI system with U = Rn, then H(U/B) is a finite
dimensional k-vector space with dimension at most n.

Proof. The module U/B has at most n generators, thus every submodule cannot have
more than n generators. Furthermore, H(U/B) admits a R/z−1R-module structure,
and R/z−1R is a field (isomorphic to k).

As the operator H extends to linear maps, we should also expect the lag to extend
to transformations, or morphisms, of systems, which we next define. If (U,B) is an
LTI system, we may replace the inclusion B ⊆ U by an inclusion map B → U.

Definition 6.5.10. A morphism h from (U,B) to (U′,B′) is defined to be a pair of
maps hU : U→ U′ and hB : B → B′ such that the following diagram commutes:

B
⊆−−−→ UyφB yφU

B′
⊆−−−→ U ′

Given a morphism h we can then form a map U/B → U′/B′, by first forming
the map U → U′/B′ then factoring it through U → U/B as a consequence of the
commuting diagram. Conversely, linear maps of the form U/B → U′/B′ arise from
morphisms of systems.

Definition 6.5.11. Let h be a morphism from (U,B) to (U′,B′), the lag lag(h) of h
is the k-linear map H(q) : H(U/B) → H(U′/B′) where q : U/B → U/B is the map
induced by H.

Given a linear map q : U/B → U′/B′, we may construct the map H(q) by restrict-
ing q to H(U/B). Given a morphism h : (U,B)→ (U′,B′), we can denote by h(U,B)
the system (hUU, hBB). The main theorem can then be restated as follows:

Theorem 6.5.12. Let (U,B) and (U,B′) be LTI systems, and let h : (U,B) →
(U,B + B′) and h′ : (U,B′)→ (U,B + B′) be the canonical morphisms, then:

Bmem ∩ B′mem/(B ∩ B′)mem = coker(lag h− lag h′)

= lag(U,B + B′)/(lag h lag(U,B) + lag h′ lag(U,B′))

Proof. The statement is immediate from 6.4.9 and the definitions in this subsection.
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We now turn to more properties and consequences.

6.6 Properties and derived consequences.

The operator H extracts information from the LTI systems (and the morphisms re-
lating them) needed to characterize the role played by memory during interaction.

6.6.1 The operator H destroys information.

The operator H is keeping at least what is necessary to characterize the role of mem-
ory. The operator H however destroys information we do not need from the systems
for understanding the role of memory.

Proposition 6.6.1. Let f : M → N be a R-linear map. If H(f) is an isomorphism,
then f does not have to be an isomorphism.

Proof. As a trivial example, consider the canonical inclusion:

R/z−1R −→ R/z−1R⊕R/(1 + z−1)R.

Furthermore, both Φ and H combined are not enough to recover a system.

Proposition 6.6.2. Let f : M → N be a R-linear map. If H(f) and Φ(f) are
isomorphisms, then f does not have to be an isomorphism.

Proof. The same example holds. Indeed, consider the canonical inclusion:

R/z−1R −→ R/z−1R⊕R/(1 + z−1)R.

This loss of information is not only on the level of a single system, but rather on
the whole interaction situation. Given a commutative diagram of R-modules with
exact rows:

0 −−−→ M
f−−−→ N

g−−−→ P −−−→ 0ym yn yp
0 −−−→ M ′ f ′−−−→ N ′

g′−−−→ P ′ −−−→ 0

by applying Φ and H, we get a commutative diagram with exact rows:

0 −→ H(M) −→ H(N) −→ H(P )
δ−→ Φ(M) −→ Φ(N) −→ Φ(P ) −→ 0

H(m)

y H(n)

y H(p)

y Φ(m)

y Φ(n)

y Φ(p)

y
0 −→ H(M ′) −→ H(N ′) −→ H(P ′)

δ′−→ Φ(M ′) −→ Φ(N ′) −→ Φ(P ′) −→ 0
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Proposition 6.6.3. If the linear maps H(m), H(n), H(p), Φ(m), Φ(n) and Φ(p) are
isomorphisms, then neither m, n nor p have to be an isomorphism.

Proof. See the example below.

All the results hold even if we restrict the modules to be finitely generated. Such
results should be intuitively hinted at as both Φ and H yield finite-dimensional vector
spaces of dimension at most n if U = Rn.

Example. As an example, let us consider two systems (U,B) and (U,B′), whose
behaviors correspond to:

B : x[n] + x[n− 1] = y[n] + 2y[n− 1] and B′ : x[n] + x[n− 1] = y[n]

We have that U/B and U/B′ are not isomorphic, however:

Bmem = B′mem and H(U/B) = H(U/B′).

Thus, keeping only H(U/B) and B cannot be enough to reconstruct B. Furthermore,
suppose we decide to interconnect each of B and B′, separately, to:

B′′ : x[n] = y[n]

The long exact sequences resulting from interconnecting B and B′′ on one end, and
B and B′′ on another, are indistinguishable.

We established that H destroys information. We can now prove that we cannot
throw away more information than what H keeps.

6.6.2 The operator H is the universal piece of information.

Recall that a functor is an operator that, in our settings, acts on R-modules and
R-linear maps. It sends an R-module to an R-module and an R-linear map to an
R-linear map. We can formally think of extracting information from our systems, or
specifically from our modules, as defining a functor.

Definition 6.6.4. A functor G is said to explain Φ if for every exact sequence 0→
M → N → P → 0, there exists a linear map δ : G(P ) → Φ(M) such that the
following sequence:

0→ G(M)→ G(N)→ G(P )
δ−→ Φ(M)→ Φ(N)→ Φ(P )→ 0

is exact.

If G explains Φ, then G can be used to characterize the role of memory during
interaction. We can show that H is the universal functor that explains Φ.
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Proposition 6.6.5. Let G be a functor. If G explains Φ, then there exists a unique
collection of maps αM : G(M) → H(M), one for every module M , such that, for
every exact sequence 0→M → N → P → 0, the diagram:

0 −→ G(M) −→ G(N) −→ G(P ) −→ Φ(M) −→ Φ(N) −→ Φ(P ) −→ 0

αM

y αN

y αP

y '
y '

y '
y

0 −→ H(M) −→ H(N) −→ H(P ) −→ Φ(M) −→ Φ(N) −→ Φ(P ) −→ 0

commutes.

Proof. The proof is outside the scope of the chapter, we refer to [Ada17g] for details.

Theorem 6.6.6. For every module M , the map αM : G(M)→ H(M) is surjective.

Proof. The proof is outside the scope of the chapter, we refer to [Ada17g] for the
proof.

Thus every other information that can explain the role of memory projects onto
H. The functor H is, in this sense, the minimal information we can hope for.

6.6.3 Interconnection in different universa.

Before turning to more implications, we revisit our notion of interconnection and
generalize it. If we are given two systems (U⊕Uc,B) and (Uc⊕U′,B′), interconnecting
them by sharing the universum Uc yields the system:

(U⊕ Uc ⊕ U′,B ⊕ U′ ∩ U⊕ B′).

The interconnection is achieved by lifting the systems to a common lifted universum
and then performing the intersection. We can however bypass such an explicit lift
through the following observation:

(U⊕ Uc ⊕ U′)/(B ⊕ U′ + U⊕ B′) = Uc/(πB + π′B′),

where πB and π′B′ denote the projection of B and B′ onto Uc. Formally, let us define
π : U ⊕ Uc →: Uc and π′ : U′ ⊕ Uc → Uc be the projections onto the Uc-coordinate,
i.e. p : (u, uc) 7→ uc.

Proposition 6.6.7. If (U⊕Uc,B) and (U′⊕Uc,B′) are LTI systems, then the behavior
B∗ of the interconnected system by sharing Uc is:

B∗ = ker(B ⊕ B′ π−π
′

−−−→ Uc)

Proof. We get B∗ ⊆ U⊕Uc⊕U such that (s, sc, s
′) ∈ B∗ if, and only if, (s, sc) ∈ B and

(sc, s
′) ∈ B′). We refer the reader to [Ada17d] for more details on interconnections of

systems living in different universa.
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Furthermore, if U∗ denotes U⊕ Uc ⊕ U′, we get that:

Proposition 6.6.8. The following canonical sequence:

0 −−−→ U∗/B∗ −−−→ (U⊕ Uc)/B ⊕ (U′ ⊕ U′c)/B −−−→ Uc/(πB + π′B′) −−−→ 0

is exact.

Proof. Construct a commutative diagram:

0 0 0

0 B∗ B ⊕ B′ π(B + B′) 0

0 U∗ (U⊕ Uc)⊕ (Uc ⊕ U′) Uc 0

0 U∗/B∗ (U⊕ Uc)/B ⊕ (Uc ⊕ U′)/B′ Uc/π(B + B′) 0

0 0 0

The top two rows are exact. Either apply the nine-lemma (or the 3 × 3 lemma, see
e.g. [Wei95] Ch. 1 Exercise 1.3.2) to get that the bottom row is exact, apply the
Snake lemma (Proposition 6.4.6) on the top two rows.

Let us define ι : U⊕Uc → U∗ and ι′ : U′⊕Uc → U∗ to be the canonical inclusions.

Corollary 6.6.9. If U∗ has dimension n, we get:

kn/B∗mem = kn/((ιB)mem ∩ (ι′B′)mem)⊕ z(πB + π′B′)/(zπB + zπ′B′)

Proof. Use the same technique we used to arrive to Theorem 6.4.9.

Thus the effects due to memory are only confined within Uc. In case dim(Uc)�
dim(U∗), then the object z(πB+π′B′)/(zπB+zπ′B′) can be seen to be very tractable.
But we cannot claim a computational gain over just performing intersections. Sym-
metry reveals that:

z(πB + π′B′)/(zπB + zπ′B′) = ((πB)mem ∩ (π′B′)mem)/(πB ∩ π′B′)mem

And therefore:

Corollary 6.6.10.

((ιB)mem ∩ (ι′B′)mem)/B∗mem = ((πB)mem ∩ (π′B′)mem)/(πB ∩ π′B′)mem

Proof. It follows immediately from Corollary 6.6.9 by manipulating quotients.
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However, the submodule zB in general contains less information than B. Thus,
there is some informational gain on that end.

6.6.4 Membership problems.

Let (U,B) and (U,B′) be two systems, and let s ∈ B and s′ ∈ B′ be two signal such
that s[0] = s′[0] = a. We then know that a ∈ Bmem ∩ B′mem. The question is: does a
belong to (B ∩ B′)mem? If t = z−1t′ ∈ z−1U, we will denote by zt the signal t′.

Proposition 6.6.11. We have: a ∈ (B∩B′)mem if, and only if, z(s− s′) ∈ zB+ zB′.

Proof. If a ∈ (B ∩ B′)mem, then there is an t ∈ B ∩ B′ with t[0] = a. In this case, we
have s− t ∈ B and t− s′ ∈ B′. Then, as t[0] = s[0], we get z(s− t) ∈ zB. Similarly,
we have z(t− s′) ∈ zB′. Then z(s− s′) = z(s− t) + z(t− s′) ∈ zB+ zB′. Conversely,
if z(s − s′) ∈ zB + zB′ then z(s − s′) = w − w′ for some w ∈ zB and w′ ∈ zB′. We
then have s− z−1w = s′ − z−1w′ = t with t[0] = a.

Fully knowing a submodule of U requires at least having a basis for it. Using
the proposition as a computational criterion assumes we can decide membership in
modules. The theory of groebner bases may be used in these instances, but will
not be considered in this chapter. Further insight ought to be derived from the
characterization, by keeping track of suitable bases of the modules.

6.6.5 Properties on the role of memory.

We can extract more properties. The operator H captures the role of memory. If
H(U/B) is the 0 space, then memory in (U,B) does not usually have a role to play
in the interaction.

Proposition 6.6.12. If a system (U,B) is memoryless then zB = B.

Proof. The statement follows by (i.) in the definition of a memoryless system.

The converse however is not true. Consider for example the LTI system (R, 〈1 +
z−1 + z−2 + · · ·〉) whose behavior consists of constant signals.

Corollary 6.6.13. If a system (U,B) is memoryless then H(U/B) = 0.

Proof. We have H(U/B) = zB/B.

Some implications include:

Proposition 6.6.14. If (U,B) and (U,B′) are memoryless systems, then (B∩B′)mem =
Bmem ∩ B′mem, i.e., memory plays no role in the interaction.

Proof. If (U,B) and (U,B′) are memoryless, (U,B + B′) is memoryless. Thus zB +
zB′ = B + B′ = z(B + B′).

Proposition 6.6.15. If B+B′ = U, then (B ∩B′)mem = Bmem ∩B′mem, i.e., memory
plays no role in the interaction.
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Proof. If B + B′ = U, then zB + zB′ = U = z(B + B′).

An LTI system (U,B) is said to be non-lagged if zB = B. In this case, we would
have H(U/B) = 0. A non-lagged system is one where no trajectory can be pulled
back in time. Input-output systems provide a good source of non-lagged systems.
Indeed, any system where B = {(x, y) ∈ Rn+m : y = Ax} for some R-matrix A can
be seen as an input-output system, and can be shown to be non-lagged.

Proposition 6.6.16. If (U,B) and (U,B′) are non-lagged system, then the role of
memory is lag(U,B + B′).

Proof. The image of H(U/B)⊕H(U/B′)→ H(U/(B + B′)) is 0.

Example 5. Referring back to the running example:

(A) x[n] = y[n] + y[n− 1] and (B) y[n] = x[n].

Both (U,BA) and (U,BB) are non-lagged, as they can be viewed as input-output de-
vices. Thus, as stated in the introduction, one dimension in the memoryless system
is lost due to memory because lag(BA + BB) is one dimensional.

Proposition 6.6.17. If (U,B + B′) is non-lagged, then memory plays no role.

Proof. The codomain of H(U/B)⊕H(U/B′)→ H(U/(B + B′)) is 0.

One may go on to develop more similar insight, and generalize them to more
complex system interconnection.

6.6.6 Destroying long-term memory.

As mentioned in the introduction, one may, naturally, forget only delays of length at
least T , by keeping only information on signals up to time T−1. Specifically, we keep,
from A and B of our running example, the pairs {(x[0, · · · , T − 1], y[0, · · · , T − 1])}
instead of {(x[0], y[0])}. The same phenomenon occurs, and the same techniques and
solution apply.

Indeed, the module Φ(M) is obtained by tensoring M with R/z−1R. We may
then, instead, tensor M with R/z−TR. This yields a system where only memory
acting in less than T times steps remains in play. The procedure followed throughout
the chapter, to characterize the role of memory, can be used unchanged for the new
case. However, the modules obtained in the long exact sequence cannot be directly
deduced from the exact sequence as done in Proposition 6.4.7. For instance, given an
exact sequence of R-module:

0→ R/z−1R →M → R/z−1R → 0,

the module M can be chosen to be either R/z−1R⊕R/z−1R or R/z−2R. Of course,
the module M cannot be any other choice than those two, but we cannot know which
one it is with no additional information. An exact sequence does not necessarily split
in the case of R-modules as it does in the case of vector spaces. However, there is
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a means to deduce the correct module from the sequence. For instance, suppose we
knew Φ(M). If Φ(M) has dimension 2, then M = R/z−1R⊕R/z−1R and if Φ(M)
has dimension 1, then M = R/z−2R. Such a means will not be pursued in this
chapter.

6.7 Concluding remarks.

There exists a general principled method to recover the loss of exactness once we
know that Φ(−) is tensoring − ⊗ R/z−1R. But the method is outside the scope of
the chapter. We briefly touched upon it in Section 6.5.2, and we refer the reader to
([Wei95], Chap 2) for more details. We can however bypass explicitly following the
method, as we have done. It reduces to our approach via the Snake lemma.

We did not work with basis of modules throughout the chapter. One needs to
be careful as to whether we know the module as a submodule or just know it as a
general module. As described in the preliminary section, two subobjects of an object
(e.g., an R-module) may be isomorphic as objects, but not as subobjects. Keeping
track of bases and other computational requirements can be made effective through
the use of Groebner bases.

The eventual goal is to apply the techniques of the chapter to settings of interest in
cascading failure and contagion phenomena. The situation in the chapter generalizes
almost immediately to settings where the objects in concern have a linear (or abelian)
structure. In other setting, we would need to lift our objects of study to linear (or
abelian) objects. We refer the reader to [Ada17a] for the details.

6.8 Appendix: Example on contagion.

Each system consists of a three node graph. Each node in the graph can be either
black or white, and is assigned an integer k as a threshold. All nodes are white
initially. A node then becomes black, if at least k of its neighbors are black. Once a
node is black it remains black forever.

For instance, let A and B denote the systems on the left and right, respectively.

2

3

1 0

2

2

Given our rule above, a threshold of 0 indicates that a node automatically becomes
black. If no threshold of 0 exists, then necessarily all nodes will remain white. We
are interested in understanding the role that the evolution rules play when A and B
interact.

We can forget the evolution rules that are prone to interact with others by keeping
from the systems only the set of final black nodes. Indeed, every set of black nodes
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S corresponds to a decision-free system having a threshold of 0 on the nodes in S
and a threshold of ∞ on the nodes not in S. Let us denote by Adec and Bdec the
decision-free systems derived from A and B respectively. Then the set of final black
nodes of Adec is empty, and that of Bdec contains the left node.

Two systems interact by combining their evolution rules. The system A&B cor-
responds to the graph that keeps on each node the minimum threshold between that
of A and B:

0

2

1

Likewise, the system Adec&Bdec corresponds to the graph that keeps on each node the
minimum threshold between that of Adec and Bdec. It can then be seen that (A&B)dec
is different than Adec&Bdec:

0

0

0 0

∞

∞

The evolution rules do play a role then, and we get an inequality similar to that
presented in the case of linear systems.

When A and B are combined, the left black node in B interacts with the rules of
A to color the right node black. Both the left and the right nodes then interact with
the rules of B to color the middle node black. This effect is encoded in the inequality.
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Chapter 7

Cascading phenomena in the
behavioral approach

Abstract

This chapter studies the behavior of a subsystem as parts of its greater system un-
dergo changes. As changes can lead, by means of interconnections, to changes in
remote subsystems, the situation is inherently one that exhibits cascade-like effects.
We cast the situation through the lens of the behavioral approach to systems theory,
and recover a characterization relating the behavior of the subsystem to that of its
greater system and the incurred change. We develop a short general theory to address
the posed situation, and instantiate it to five cases: linear finite-dimensional systems,
affine systems, finite systems, linear time-invariant systems and systems defined by
polynomial equations. The theory relies on methods from homological algebra, and
uncovers the zero-dynamics of a system as essential to relate the behavior of a subsys-
tem to its greater system. The general pattern exhibited by the theory is of separate
interest to understand interaction-related phenomena that generally occur in the in-
teraction of systems.
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7.1 Introduction

Consider the following simple resistive circuit:

l1 l2

−
+

If line l2 is disconnected from the source, then line l1 will also be disconnected
from the source. Indeed, the current passing through l1 has to pass through l2. The
converse is, of course, not true. We have here a simple intuitive instance of a cascading
phenomenon. How can we, however, make this intuition arise mathematically?

To formally set up the problem, we let li be in one of two states Ui = {oni, offi}.
The state on represents connected to the source and the state off represents discon-
nected from the source. The set of all states, termed the universum, is U := U1×U2,
and the set B ⊆ U of admissible states, termed the behavior, is:

B :=
{

(on1, on2), (off1, off2), (off1, on2)
}
.
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The set B indicates that if line l2 is off2, then line l1 is necessarily off1. One can incor-
porate time and delay into the situation, by considering states as timed trajectories.
Regardless, nothing, up to this point in the formulation, is mathematically indicative
of any cascading phenomenon.

7.1.1 The cascading intuition

We intuitively know that cascade-like effects occur because of the interrelation of
the two lines. Such a statement is very informal. We can however mathematically
test the intuition for cascading phenomena through the following experiment. Let
us suppose that we are able to forget the interrelation between l1 and l2 in B to get
Bunrelated. We can then compare the separate responses of B and Bunrelated towards
a change in the state of l2. Cascade-like phenomena would be in play if there is a
discrepancy between those responses. If we let l2 become off in B, then l1 can only
be off. However, as we shall observe, if we let l2 become off in Bunrelated, then l1 can
be either on or off.

If we formalize going from B to Bunrelated as a certain function, the phenomenon
becomes encoded in the function. Specifically, let π1 and π2 denote the canonical
projections onto the coordinates:

π1 : U→ U1 and π2 : U→ U2.

We can forget the interrelation between the lines l1 and l2 by defining a map:

π : B 7−→ π1B × π2B.

As π1B = U1 and π2B = U2, we get πB = U. The system πB is Bunrelated, and
ought to be interpreted as the best system describing B if the lines were forced to
be independent. Let us then suppose that we disconnect line l2. This is achieved by
declaring only (∗, off2) as allowable. Equivalently, this is achieved mathematically by
intersecting B with C := {(on1, off2), (off1, off2)}. When performing the change, we
get:

π(B ∩ C) 6= π(B) ∩ π(C).

The presence of the inequality is indicative of the phenomenon. The phenomenon
arises if, and only if, the map π fails to commute with ∩. Our goal is to under-
stand and characterize the inequality. Understanding the inequality, can be
done by separately understanding the map π1 and π2. Our interest then reduces to
understanding the effect of change on a subsystem of the greater system.

7.1.2 The general one-sided situation

We then consider a mega-system comprised of an interacting mixture of infrastruc-
tures (e.g., power, transportation, communication), markets (e.g., prices, firms, con-
sumers), political entities and many individuals. We are interested in understanding
the evolution of the behavior of a subsystem of this mega-system, as changes are ef-
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fected into the mega-system. Of courses, changes directly effected onto the subsystem
modifies its behavior. It is also the case that seemingly non-related changes causes a
shift in the behavior by a successive chain of events.

Let M, S and R be sets such that M = S×R. Following the behavioral approach
to systems theory terminology (see e.g., [Wil07], [PW98], also later on described in
Subsection 7.2.1) we will have M, S and R be the outcome space, or universum, of the
mega-system, the subsystem, and the rest (or remainder) in the mega-system that is
not the subsystem of interest. The systems will then be subsets of those universa.
Specifically, the sets M ⊆ M, S ⊆ S and R ⊆ R denote the behavior of the mega-
system, the subsystem and the rest, respectively. Although S is a subsystem of M,
the set S is not a subset of M, but is rather a projection (or a quotient) of M onto
the S-coordinate. A change in our mega-system, following the behavioral approach, is
then depicted as an intersection with a behavior C ⊆ M. If we denote by π : M→ S
the projection onto the S-coordinate, then πM = S and we generally observe:

π(M∩ C) 6= π(M) ∩ π(C).

The change C affects the subsystem S through interactions with R. If all the inter-
actions were confined to be within R, then equality would follow. In such a case,
changes outside of S do not affect S.

7.1.3 The question and the contribution

Thus, as already motivated by the example, the inequality is synonymous to the
presence of cascade-like phenomena. The question we then ask is:

Question. How can we non-trivially relate π(M∩C) to π(M), π(C) and potentially
properties, or features, of M and C despite the presence of the inequality?

Informally, how can we relate the behavior of the subsystem, to that of its greater
system and the incurred change? We develop a short general theory to answer that
question, and instantiate it to the following main cases:

• Linear (finite-dimensional) systems over fields.

• Affine systems over fields.

• Finite systems.

• Linear time-invariant systems.

• Algebraic systems defined by polynomial equations.

In each case, we obtain a different characterization following a same general pattern.
In linear systems, whereM and C are subspaces of a vector space M, we retrieve, for
instance, a characterization of the form:

(πM∩ πC)/π(M∩ C) = ρ(M+ C)/(ρM+ ρC).

The space πM is a subspace of S, whereas ρ(M) is a subspace of R. The quantity
ρ(M) is an invariant ofM, smaller thanM, that captures the potential for cascading
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behavior. The space ρ(M) corresponds, in this case, to the subspace of M having 0
as an S-coordinate. If π(M) is interpreted (or labeled) as the output of the system
M, then ρ(M) corresponds to the zero-dynamics of the system (see, e.g., [Isi95] Ch
4, Sec 4.3 and [Isi13]) interpreted through the lens of the behavioral approach. The
link to zero-dynamics and its potential implications are not pursued in this paper,
but may be a subject of further investigation. The link is however briefly revisits in
Section 7.4.2.

The characterization can be refined, and lends itself to a variety of consequences.
It is generally attained through the following observation:

i. Interconnection (or change) in systems can be expressed as an exact sequence.

ii. Cascading phenomena is synonymous to a loss of exactness.

iii. Exactness can be recovered by using adequate invariants.

The characterization relies on methods in homological algebra.
In mathematical terms, the paper amounts to developing a (co)homology theory

capture the effects of the cascade-like phenomenon. The 0th order (co)homology
object encodes the behavior of the subsystem, and the higher (co)homology objects
(in this paper only one is non-trivial) encode the potential of a system for effects.
Such notions will not be explicitly used in this paper, but may be helpful to keep in
mind, if one is familiar with the terms.

7.1.4 Outline

We begin, in Section 2, with a review of the behavioral approach and a development
of the situation of cascade-like effects at hand. We then develop and present the
general theory in Section 3. We instantiate it to linear (finite-dimensional) systems
over fields, affine systems over fields, finite systems, linear time-invariant systems
and algebraic systems defined by polynomial equations in sections 4, 5, 6, 7 and 8,
respectively. These sections will show an intentional recurring pattern. We finally
conclude with some remarks in Section 9.

7.2 Preliminaries

We assume the reader is familiar with basic elements of commutative algebra, namely
commutative rings and modules. They will be used on an elementary level. We refer
the reader to [AM69] for details on the matter.

7.2.1 Review of the behavioral approach

Rather than viewing a system as an input-output device, the behavioral approach
views a system as a collection of trajectories allowed possible by the laws of a model.

Definition 7.2.1 (cf. [PW98], Section 1.2.1). A Willems system is a pair (U,B)
where U is a set, called the universum—its elements are called outcomes—and B a
subset of U called the behavior.
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A system is made dynamical by considering universa of the form WT, the set
of maps from a set T to a set W. Linearity and time-invariance emerge when the
universa and the behaviors are endowed with a certain structure. The behavioral
approach also enables us to define interconnections of systems. Two systems are
interconnected to yield a behavior containing the outcomes that are allowed possible
by both systems. Indeed, if the behaviors are solutions to sets of equations, then the
interconnection informally consists of merging, or combining, the sets of equations
together. We then have:

Definition 7.2.2. The interconnection of (U,B) and (U,B′) yields the system (U,B∩
B′).

We refer the reader to [PW98] and [Wil07] for more details on the physical inter-
pretation of the approach.

Remark All the cases studied in this paper are attained by equipping the universum
U and the behaviors B with suitable mathematical structures. When setting up the
general problem, we can however forget about the structure and consider only the
sets underlying their systems. Most importantly, forgetting the structure will not
cause any problems when it comes to interconnections. For instance, the intersection
of two subspaces of a vector space amounts to intersecting their underlying sets. One
reason for this is because the algebraic structures considered are the fixed-points of
closure operators on the set of subsets. Those fixed-points are always closed under
set-intersection.

7.2.2 The cascading intuition for a subsystem

Recall that M, S and R are sets, defining the universa of the mega-system, the
subsystem and the rest, respectively. As M = S×R, we have a canonical projection,
namely a surjective map:

π : M −→ S.

Let 2M denote the power set ofM. Every elementM of 2M then defines a (mega)system
(M,M) in the Willems sense. Similarly, every S ∈ 2S defines a (sub)system in the
Willems sense. The megasystems in 2M are related via an inclusion order relation ⊆,
and two megasystems M and M ′ are interconnected, in a unique way, to yield their
greatest lower-bound M ∩M ′. The same holds for 2S.

If (2M,∩) and (2S,∩) denote the semilattices of megasystems and subsystems,
respectively, then the projection π lifts to a map:

π : (2M,∩) −→ (2S,∩)

where explicitly:

π : M 7−→ π(M) := {s ∈ S : (s, r) ∈M for some r ∈ R}

The map π satisfies two properties:
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P.1. If M ⊆M ′, then π(M) ⊆ π(M ′).

P.2. For every S ∈ 2S, there exists a largest M ∈ 2M such that π(M) = S.

The first property states that π is order-preserving, thus preserving the relationship
among megasystems when going to subsystems. The second property states that ev-
ery possible subsystem S can be completed into a mega-system in a simplest possible
way, namely into S × R. We may think of the map π as a veil that conceals parts
or mechanisms in the mega-system and leaves the subsystem observable. Cascad-
ing phenomena, or more precisely what we term generative effects (in [Ada17a] and
[Ada17b]), are said to emerge when the result of the interaction cannot be explained
by the observable part only. Specifically, when:

π(M ∩M ′) 6= π(M) ∩ π(M ′),

for some M and M ′. The intuition of cascade-like phenomena is manifested in the
inequality. The goal of this paper is to non-trivially relate π(M∩M ′) to π(M)∩π(M ′).
We refer the reader to [Ada17a] and [Ada17b] for more details on generative effects.

7.2.3 Cascading intuition among multiple subsystems

Let us suppose that M = S1 × · · · × Sn. Every factor may be seen to correspond
to a component of our mega-system. We may attempt to capture the cascade-like
effects that may emerge from the interaction of these systems, through the following
approach, already described in the introduction.

For each component i, we define πi : M → Si to be the canonical projection. As
seen in the previous subsection, πi is a veil and will generally result in an inequality
of the form:

πi(M ∩M ′) 6= πi(M) ∩ πi(M ′),

for some M and M ′. The inequality indicates that what is concealed (by πi) in the
system, can affect, when changed, the behavior of the ith component. We can then
define π to be product of the πi’s. Namely:

π : M 7−→ π1(M)× · · · × πn(M).

The map π destroys all the interrelation among the components, and yields the sim-
plest system if all the components were not allowed to interact. As a consequence of
the separate πi’s, we generally get:

π(M ∩M ′) 6= π(M) ∩ π(M ′),

The analysis, in this paper, is intended to aid in understanding this situation better.
More specifically, it aims to quantify the inequality. However, as already mentioned,
such a study can be performed on the separate πi’s. The paper will then only study
the one-sided situation.
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7.3 The general theory

Throughout this section, R will be a commutative ring with unit. The notion of exact
sequences will be central to the paper. Interconnection of systems will be expressed
as an exact sequence. The presence of cascading phenomena will be linked to a
loss of exactness. Finally, relating the subsystem of the megasystem to the separate
components will be realized by an exact sequence.

7.3.1 Exact sequences of R-modules

We begin by the notion of exactness in sequences of R-modules.

Definition 7.3.1. A sequence of R-modules Mi and R-module homomorphisms fi

· · · −−−→ Mi−1
fi−−−→ Mi

fi+1−−−→ Mi+1 −−−→ · · ·

is said to be exact at Mi if im fi = ker fi+1. The sequence is called an exact sequence
if it is exact at every Mi.

The kernel of a linear map f : M → N is the largest submodule K of M such
that f(K) = 0. Two items are then in play to define the kernel: the object K and
the inclusion relation as a submodule. It is thus beneficial to explicitly think of the
kernel as an injective map K →M . As a clarification:

Definition 7.3.2. Let f : M → N be a linear map. The kernel, image and cokernel
of f are respectively the canonical linear maps ker(f) → M , im(f) → N and N →
coker(f). We define ker(f), im(f) and coker(f) to be the objects of the kernel, image
and cokernel of f .

In light of this:

Proposition 7.3.3. The sequence 0 → im(f) → N → coker(f) → 0 is an exact
sequence for every R-linear map f : M → N .

Proof. We have that im(f)→ N is injective and that N → coker(f) is surjective. As
coker(f) = N/ im(f), we get exactness at N .

Or dually:

Proposition 7.3.4. The sequence 0 → ker(f) → M → im(f) → 0 is an exact
sequence for every R-linear map f : M → N .

Proof. We have ker(f)→ M is injective and M → im(f) is surjective. Exactness at
M follows from the first isomorphism theorem: im(f) = M/ ker(f).

The image im(f) by duality should be the coimage coim(f). However, the the two
objects are isomorphic in the case of R-modules, or other abelian objects in general.

Interconnection of systems will occur from an instance of Proposition 7.3.4. To
illustrate, let us consider each system to be an R-module, rather than a pair (U,B).
We are then given two maps f : M → N and f ′ : M ′ → N . The modules M and M ′
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correspond to our systems, and the maps f and f ′ correspond to how the systems
will be glued along the system N . The interconnected system then corresponds to
ker(f − f ′) and we recover an exact sequence:

0 −−−→ ker(f − f ′) −−−→ M ⊕M ′ −−−→ im(f − f ′) −−−→ 0

In particular, following the behavioral approach, let U be a module. Suppose M and
M ′ are submodules of U. We then have two Willems systems (U,M) and (U,M ′),
and two canonical injections:

f : M → U and f ′ : M ′ → U

The module M ⊕ M ′ does not yield a submodule of U. Gluing them along the
injections f and f ′, however, yields a submodule of U. We then recover an exact
sequence:

0 −−−→ ker(f − f ′) −−−→ M ⊕M ′ f−f ′−−−→ im(f − f ′) −−−→ 0

The modules im(f − f ′) and ker(f − f ′) are M +M ′ and M ∩M ′, respectively. We
just recovered the canonical exact sequence 0→M ∩M ′ →M ⊕M ′ →M +M ′ → 0.

7.3.2 Exact sequences of linear maps

The notion of exactness also extends to sequences of linear maps. We first need to
define a notion of linear map homomorphism. Let f : M → N and f ′ : M ′ → N ′ be
R-linear maps.

Definition 7.3.5. A morphism Φ : f ⇒ f ′ is pair of maps φM : M → M ′ and
φN : N → N ′ such that the diagram:

M
φM−−−→ M ′yf yf ′

N
φN−−−→ N ′

commutes.

Given a morphism Φ : f ⇒ f ′, we may then define kernels, images and cokernels.
There exists, however, two ways to define such notions for a square diagram: either
vertically or horizontally. The horizontal notion will be used to extend the notion of
exactness to sequences of linear maps. The vertical notion will then be used to send
exact sequences of linear maps to sequences (non-necessarily exact) of R-modules.

Definition 7.3.6. Let Φ := (φM , φN) be a morphism. The objects of the horizontal
kernel, image and cokernel of Φ are, respectively, the canonical linear maps kerh Φ :
kerφM → kerφN , imh Φ : imφM → imφN and cokerh Φ : cokerφM → cokerφN .
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Indeed, recall that the (horizontal) kernel (resp. image, cokernel) of Φ : f ⇒ f ′ is
a linear map kerh Φ⇒ f (resp. imh Φ⇒ f , f ′ ⇒ cokerh Φ). We may then extend the
notion of exact sequences to linear maps and their morphisms:

Definition 7.3.7. A sequence of R-linear maps fi and morphisms Φi

· · · fi−1 fi fi+1 · · ·Φi Φi+1

is said to be exact at fi if imh Φi = kerh Φi+1. The sequence is called an exact sequence
if it is exact at every fi.

Proposition 7.3.8. A sequence of R-linear maps fi : Mi → Ni and morphisms Φi

· · · fi−1 fi fi+1 · · ·Φi Φi+1

is exact at Mi if, and only if, the commutative diagram:

· · · −−−→ Mi−1

φM,i−−−→ Mi

φM,i+1−−−−→ Mi+1 −−−→ · · ·

fi−1

y fi

y fi+1

y
· · · −−−→ Ni−1

φN,i−−−→ Ni

φN,i+1−−−−→ Ni+1 −−−→ · · ·

has rows exact at Mi and Ni. The sequence is exact if the rows of the diagram are
exact sequences.

Proof. The condition imh Φi = kerh Φi+1 is to be checked pointwise at Mi and Ni.

An exact sequence ofR-linear maps is only a commutative ladder with exact rows.
Similarly:

Definition 7.3.9. Let Φ : f ⇒ f ′ be a morphism. The objects of the vertical kernel,
image and cokernel of Φ are, respectively, the canonical linear maps kerv Φ : ker f →
ker f ′, imv Φ : im f → im f ′ and cokerv Φ : coker f → coker f ′.

The vertical kernel, image and cokernel will be used to operate on sequences of
linear maps.

7.3.3 The loss of exactness

EveryR-linear map f admits a cokernel, whose object is coker(f). The coker operator
also acts on morphsims Φ : f ⇒ f ′ of R-linear maps, sending Φ to a linear map
cokerv(Φ) as discussed in the previous subsection, in such a way that:

i. For all Φ : f ⇒ f ′ and Φ′ : f ′ ⇒ f ′′, we have cokerv(Φ ◦ Φ′) = cokerv(Φ) ◦
cokerv(Φ

′).

ii. If idf : f ⇒ f is the identity morphism, then cokerv(idf ) = idcoker(f) is the
identity linear map on coker(f).
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An operator satisfying the two properties is termed a functor. Not only does it acts
on objects, but also on morphisms between objects.

Remark 7.3.10. We hereafter drop the v subscript, and denote cokerv (resp. kerv,
imv) by coker (resp. ker, im). We however always refer to the horizontal notions
cokerh, kerh and imh using the corresponding h subscript.

The functor coker is also said to be additive as:

Proposition 7.3.11. If f and f ′ are linear maps, then coker(f ⊕ f ′) = coker(f) ⊕
coker(f ′).

Proof. Let M and M ′ be the domain of f and f ′ respectively. The sequence 0 →
im(f) ⊕ im(f ′) → M ⊕M ′ → coker(f) ⊕ coker(f) → 0 is exact. As im(f ⊕ f) =
im(f)⊕ im(f ′) and cokernels are unique up to isomorphism, we get coker(f ⊕ f ′) =
coker(f)⊕ coker(f ′).

As coker acts on both linear maps and their morphisms, it can be applied to an
exact sequence:

Proposition 7.3.12. If 0 ⇒ f ⇒ f ′ ⇒ f ′′ ⇒ 0 is a short exact sequence of linear
maps, then the sequence 0 → coker f → coker f ′ → coker f ′′ → 0 is always exact at
coker f ′′ and coker f ′.

Proof. See e.g., Proposition 7.3.14.

The coker functor does not however preserve exactness on the left. Indeed, the
map coker f → coker f ′ may fail to be injective.

Proposition 7.3.13. If 0 ⇒ f ⇒ f ′ ⇒ f ′′ ⇒ 0 is a short exact sequence of linear
maps, then the sequence 0→ coker f → coker f ′ → coker f ′′ → 0 need not be exact at
coker f .

Proof. See e.g., Proposition 7.3.14.

This loss of exactness is the cause of the cascading phenomena as we shall see.

7.3.4 The ker-coker sequence

The ker operator is also a functor, acting on bothR-linear maps and their morphisms.
The important feature of ker is that it complements the information of the coker
functor in the following sense:

Proposition 7.3.14 (Corollary of the snake lemma, cf. [AM69] ch. 2, p. 23). Let
0 ⇒ f ⇒ f ′ ⇒ f ′′ ⇒ 0 be a short exact sequence, there exists a map δ such that the
sequence:

0 −→ ker f −→ ker f ′ −→ ker f ′′
δ−→ coker f −→ coker f ′ −→ coker f ′′ −→ 0

is exact.
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Proof. The statement follows from a direct application of the snake lemma, see e.g.
[AM69] ch. 2, p. 23, proposition 2.10.

The pair (coker, ker) is termed a δ-functor (see e.g., [Wei95] ch 2. for the ter-
minology). The kernel functor encodes what is causing the loss of exactness of the
cokernel functor.

Given such a six-term exact sequence, we may use it to relate elements of it to its
other constituents. Specifically, in the case of vector spaces, we get:

Proposition 7.3.15. If the sequence of vector spaces:

0 −→ V0 −→ V1
f−→ V2 −→ V3 −→ V4

g−→ V5 −→ 0,

is exact, then V0 = ker f and V3 = coker f ⊕ ker g.

Proof. The sequence 0 → im(V1 → V2) → V2 → im(V2 → V3) → 0 is exact. Indeed,
we have im(V1 → V2) = V1/ ker(V1 → V2). As ker(V1 → V2) = im f by exactness of
the six-term sequence, we get that im(V1 → V2) = coker(f). By exactness, we also get
im(V2 → V3) = ker g. Finally, short exact sequence of vectors spaces split. Namely,
if 0→ U → V → W → 0 is a sequence of vector spaces, then V = U ⊕W .

If the elements of the sequence are not vector spaces, and we are given no addi-
tional information, then we can only deduce short exact sequences:

Proposition 7.3.16. If the sequence of R-modules M1
f−→M2 →M3 →M4

g−→M5 is
exact, then the sequence 0→ coker f →M3 → ker g → 0 is exact.

Proof. We have ker g = im(M3 → M4) by exactness. We also have coker f =
M2/ im(f) and im f = ker(M2 → M3). By the first isomorphism theorem, we get
im(M2 →M3) = M2/ ker(M2 →M3).

With additional information on the sequence, or on the situation it arises from,
we may deduce M3 accordingly.

As will become clear as the paper goes along, the ker functor throws away infor-
mation from linear maps, and keeps only what is necessary to understand how much
exactness is lost. Conversely, we can interpret ker as throwing everything that is not
needed to recover the exactness lost, via the following:

Proposition 7.3.17. Let (coker, G) be a δ-functor (see e.g., [Wei95] Ch 2 for a
complete definition). There exists a unique collection of R-linear maps αf : G(f)→
ker(f), one for each f , such that, for every exact sequence 0 ⇒ f ⇒ f ′ ⇒ f ′′ ⇒ 0,
the diagram:

0 −→ G(f) −→ G(f ′) −→ G(f ′′) −→ coker(f) −→ coker(f ′) −→ coker(f ′′) −→ 0

αf

y αf ′

y αf ′′

y '
y '

y '
y

0 −→ ker(f) −→ ker(f ′) −→ ker(f ′′) −→ coker(f) −→ coker(f) −→ coker(f) −→ 0

commutes.
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Proof. The proof is outside the scope of the paper, we refer to [Ada17g] for more
details. The statement amounts to showing that (coker, ker) is a universal δ-functor
(see e.g., [Wei95] ch. 2 for the terminology).

Most importantly:

Proposition 7.3.18. For every R-linear map f , the map αf : G(f) → ker(f) is
surjective.

Proof. The proof is outside the scope of the paper, we refer to [Ada17g] for a proof
and more details.

The opposite theory By duality, the last two sections can be developed by inter-
changing the words kernel and cokernel. All surjective maps would become injective
maps, and vice versa. The ker functor will not preserve exactness on the right.
The coker encodes the additional information needed to recover exactness. The pair
(ker, coker) is also a δ-functor. The pair (ker, coker) is specifically known as a coho-
mological δ-functor, whereas the pair (coker, ker) is known as a homological δ-functor.

7.3.5 How to apply it to systems?

The key result to be used is the six-term exact sequence relating the kernels of linear
maps to their cokernels. To apply the theory to our classes of systems, we need to
lift our situation to a linear map. Such a lift consists of transforming our situation of
understanding the subsystem of a system into a situation of recovering the cokernel
(or kernel) of a linear map, as proposed by the above theory. A lift can then be seen
as a functor, that sends a system to a linear map and an inclusion of systems into a
morphism of linear maps. The lift will be successful if it adheres to the following three
properties. First, it encodes the behavior of the subsystem as either the kernel or the
cokernel. Second, it preserves the interconnection of systems. Third, it encodes the
cascade-like effects in a loss of exactness. If the lift is successful, then applying the
solution of the above theory will give us a meaningful result in our situation.

7.4 Linear systems over fields

Let k be a field. We begin by considering linear systems defined over the field k.

Definition 7.4.1. A Willems system (U,B) is said to be k-linear if U is a k-vector
space, and B is a linear subspace of U. The system (U,B) is additionally said to be
finite-dimensional if U has finite dimension.

Our systems (M,M), (S, S) and (R, R) will be finite-dimensional k-linear systems.
Let M, S and R be finite-dimensional k-vector space. The veil π : M → S is a
surjective linear map that projects an element m = (s, r) ∈M into an element s ∈ S.
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7.4.1 A lift to linear maps

We will lift our systems to linear maps as follows:

Definition 7.4.2. We define L to be a functor that sends every subspace M of M to:

hM :=

My(π,p)

S⊕ (M/M)

and every order relation M ⊆ M ′, or equivalently inclusion map M → M ′ to a
morphism hM ⇒ hM ′ of linear maps:

M id−−−→ M

(π,p)

y y(π,p′)

S⊕ (M/M) −−−→
(id,i)

S⊕ (M/M ′)

The lift encodes the behavior of the subsystem in the cokernel of the map:

Proposition 7.4.3. For every M , we have cokerhM = S/π(M).

Proof. The image of (π, p) is π(M)⊕M/M .

The lift also preserves the construction, or interconnection, of systems:

Proposition 7.4.4. The sequence 0 ⇒ hM∩M ′ ⇒ hM ⊕ hM ′ ⇒ hM+M ′ ⇒ 0 is exact
for every M and M ′.

Proof. The sequence 0 → M/(M ∩M ′) → M/M ⊕M/M ′ → M/(M + M ′) → 0 is
exact. Direct sum of exact sequences yields an exact sequence. The two rows of the
obtained ladder diagram are then easily seen to be exact.

Finally, cascade-like phenomena occur precisely when there is loss of exactness:

Proposition 7.4.5. For every M and M ′, we have π(M∩M ′) 6= π(M)∩π(M ′) if, and
only if, the sequence 0 → cokerhM∩M ′ → cokerhM ⊕ cokerhM ′ → cokerhM+M ′ → 0
is not exact at cokerhM∩M ′.

Proof. We have cokerhM∩M ′ = S/π(M ∩M ′). Exactness on the left is then lost if,
and only if, π(M ∩M ′) 6= π(M) ∩ π(M ′).

The object encoding the potential for this loss is the kernel.

Proposition 7.4.6. We have kerhM = {r ∈ R : (0, r) ∈M} is a subspace of R.

Proof. We have x ∈ kerhM if, and only if, π(x) = 0 and x ∈M .

The information we need consists of forcing all the values in the subsystem to
be zero, and backtracking to the potential values in the remaining part of the mega-
system.
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7.4.2 The potential for cascades

Let us define ρ (for reduce) to be the map sending a subspace M into ρ(M) = kerhM .
Namely:

Definition 7.4.7. We define ρ such that M 7→ {r ∈ R : (0, r) ∈M}.

The map ρ can be seen to be a dual of π in the following sense:

I.1. If M ⊆M ′, then ρ(M) ⊆ ρ(M ′).

I.2. For every R ∈ 2R, there exists a smallest M ∈ 2M such that ρ(M) = R.

Another duality comes from the snake lemma, as we get the following theorem:

Theorem 7.4.8. For every M and M ′, we have:

S/π(M ∩M ′) = S/(πM ∩ πM ′)⊕ ρ(M +M ′)/(ρM + ρM ′)

Proof. Apply Proposition 7.3.14 and Proposition 7.3.15.

Equivalently, we have:

(πM ∩ πM ′)/π(M ∩M ′) = ρ(M +M ′)/(ρM + ρM ′)

As a list of corollaries, we get:

Corollary 7.4.9. If (s, r) ∈ M and (s, r′) ∈ M ′, then: s ∈ π(M ∩M ′) if, and only
if, r − r′ ∈ ρM + ρM ′.

Proof. If s ∈ π(M ∩ M ′), then there exists an (s, r∗) ∈ M ∩ M ′. We then get
r − r∗ ∈ ρ(M) and r∗ − r′ ∈ ρ(M ′) and thus r − r′ ∈ ρ(M) + ρ(M ′). Conversely, if
r − r′ ∈ ρ(M) + ρ(M ′), then r − r′ = w − w′ with w ∈ ρ(M) and w′ ∈ ρ(M ′). Thus
(0, w) ∈M and (0, w′) ∈M ′ and we get (s, r − w) = (s, r′ − w′) ∈M ∩M ′.

Corollary 7.4.10. We have π(M ∩M ′) = πM ∩ πM ′ if, and only if, ρ(M +M ′) =
ρM + ρM ′.

Proof. We have (πM ∩ πM ′)/π(M ∩M ′) = ρ(M +M ′)/(ρM + ρM ′).

Corollary 7.4.11. If ρM + ρM ′ = R, then π(M ∩M ′) = πM ∩ πM ′.

Proof. If ρM + ρM ′ = R, then ρ(M +M ′)/(ρM + ρM ′) = 0.

Corollary 7.4.12. If ρ(M +M ′) = 0, then π(M ∩M ′) = πM ∩ πM ′.

Proof. If ρ(M +M ′) = 0, then ρ(M +M ′)/(ρM + ρM ′) = 0.
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Remark Suppose π(M) is interpreted (or labeled) as the output of the system M .
To recover ρ(M), we then force the output to be 0 and collect the allowable outcomes.
As such ρ(M) can be seen to correspond to the zero-dynamics of the system (see,
e.g., [Isi95] Ch 4, Sec 4.3 and [Isi13]) interpreted through the lens of the behavioral
approach. The link to zero-dynamics and its potential implications are not pursued
in this paper, but may be a subject of further investigation. The same interpretation
will reappear in the subsequent classes of systems, but will not be explicitly stated.
Work, beyond the scope of this paper, is however needed to bring the link to fruition.

7.4.3 Localized changes

Any change is itself a system in M. In case the change is localized, we get a stronger
characterization. Suppose that the change will only be incurred on a subsystem of
M . Specifically, we have a surjection p : M→ Sc. As the spaces in concern are vector
spaces, the map p induces a linear inclusion map i : Sc → M such that pi is the
identity on Sc. The map ip is definitely not the identity map on M.

Definition 7.4.13. A change (M, C) is said to be localized to Sc if ip(C) = C.

In such a setting, incurring the change C into M consists, equivalently, of intercon-
necting the system (M,M) with the system (Sc, p(C)), living in a different universum.
Restricting C to be a system on Sc yields us some gain in the characterization.

Let (M, C) be localized to Sc. The following sequence is then exact:

0→M/(M ∩ ip(C))→M/M ⊕ Sc/p(C)→ Sc/(p(M) + p(C))→ 0.

We can then construct a commutative ladder diagram, with exact rows, whose right-
most column is:

Sc

S⊕ Sc/(p(M) + p(C))

The map Sc → S is πi. Furthermore, note that:

Sc/(pM + pC) = M/(ipM + ipC).

Let ι : R → M be the canonical linear inclusion such that ρι = idR. Then applying
Proposition 7.3.14 (namely the snake lemma) to our diagram yields:

Proposition 7.4.14. If C is a subspace of M be localized to Sc, then:

(πM ∩ πC)/π(M ∩ C) = pιρ(ipM + ipC)/(pιρM + pιρC).

We also have pιρ(M + C) = pιρi(pM + pC).

Proof. All the needed elements of the proof have been described leading up to the
proposition. The last statement is due to C = p(C) ⊕ Rc. Then M + C = M +
(p(C)⊕ Rc) = (p(M) + p(C))⊕ Rc.
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The spaces pιρ(ipM + ipC) and (pιρM + pιρC) are both subspaces of Sc. Thus if
Sc is a very small space, we acquire a good computational gain. We can also further
optimize the left hand side (πM ∩ πC)/π(M ∩ C), but the intersection cannot be
performed on a subspace smaller than Sc + S, if both are viewed as subspaces of M.
A corollary then becomes:

Corollary 7.4.15. If (s, r) ∈M and (s, r′) ∈ C then:

s ∈ π(M ∩M ′) if, and only if, pιr − pιr′ ∈ pιρM + pιρC.

Proof. The proof goes long the same lines as that of Corollary 7.4.9.

As a concrete instantiation of Corollary 7.4.15 (and 7.4.9) , we consider the fol-
lowing open circuit:

vo

io−→

v

i−→

Let us suppose that the universum is R4 (the 4-dimensional vector space over the
reals) corresponding to tuples (v, i, vo, io). We denote the behavior of the circuit by
M ⊆ R4. The behavior M corresponds to the tuples (v, i, vo, io) that satisfy the laws
of the circuit. The subsystem in concern corresponds to the output terminal, namely
the pair (vo, io). The behavior of the subsystem is then π(M). The space ρ(M) in this
example will consist of the pairs (v, i) satisfying the circuit laws if i0 and vo are forced
to be 0. Thus ρ(M) = {(0, i) : i ∈ R}. Indeed, the non-labeled terminal may admit
a non-zero current, as the circuit is open (i.e., free to interact with other circuits).
Suppose we choose an output (Vo, Io), the question is:

Question. Can such an output be possible if we append (or glue) a circuit C at the
left terminal?

Let p(C) denote the projection of C onto the terminal (v, i). We deduce from
Corollary 7.4.9 that the answer to the question is yes if, and only if, there is a non-zero
voltage v that is possible in p(C). Explicitly, we know that (V0, i, V0, I0) ∈ M . The
answer is then yes if, and only if, (V0, i)−0 ∈ p(C)+ρ(M). As ρ(M) = {(0, i) : i ∈ R},
the answer is equivalent to p(C) containing a pair with a non-zero voltage.

For instance, in the case where C is:

v

i−→

The answer is yes; the pair (Vo, Io) can be made to appear at the subsystem. However,
in the case where C is:

v

i−→
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The answer is no; we can never observe (V0, I0) at the subsystem.
Further characterizations may be further deduced, but we move on to other classes

of systems. We nevertheless mention an alternative lift that could be performed.

7.4.4 An alternative lift

Instead of lifting our situation through L, we could have performed an alternative
lift. Let us associate to every subspace M of M a linear map:

gM :=

Myπi
S

i.e., the composition M
i−→ M π−→ S, and to every order relation M ⊆ M ′, or equiva-

lently inclusion map M →M ′ to a morphism gM ⇒ gM ′ of linear maps:

M
⊆−−−→ M ′

πi

y yπi′
S −−−→

id
S

It follows that coker gM = S/πM and ker gM = ρ(M). Furthermore, for every M and
M ′, the sequence 0⇒ gM∩M ′ ⇒ gM ⊕ gM ′ ⇒ gM+M ′ ⇒ 0, is exact. Finally, cascade-
like phenomena also occur precisely when there is loss of exactness. Indeed, for every
M and M ′, we have π(M ∩M ′) 6= π(M) ∩ π(M ′) if, and only if, the sequence 0 →
coker gM∩M ′ → coker gM ⊕ coker gM ′ → coker gM+M ′ → 0 is not exact at coker gM∩M ′ .
Thus, for all purposes, we could have recovered the exact characterizations in this
section via this alternative lift.

7.5 Affine systems over fields

Let M, S and R be finite dimensional vector spaces. For ease of presentation, we will
fix a basis for M denoted by {s1, · · · , sm, r1, · · · , rn} consistent with the factorization,
namely such that {s1, · · · , sm} is a basis for S and {r1, · · · , rn} is a basis for R. An
element of M can be seen to correspond to a pair (s, r) where s and r are a linear
combinations of the si’s and ri’s, respectively.

Definition 7.5.1. A Willems system (U,B) is said to be k-affine if U is a k-vector
space, and B is an affine subspace of U. The system (U,B) is additionally said to be
finite-dimensional if U has finite dimension.

A system (M,M) is then said to be k-affine if M is the set of solutions (in m) to
Am = b for some matrix A and some vector b. In case b is the zero vector, we recover
the linear case. Thus M is typically defined by a set of equations {aTi s+ bTi r = ci}i.
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The veil π : M→ S is a surjective map that projects an element m = (s, r) ∈M into
an element s ∈ S.

7.5.1 The space of equations

Let (M,M) be a system defined by equations {aTi s + bTi r = ci}i. To each subspace
M , we assign I(M) to be the set of annihilators of M . Precisely we let IM be the free
k-vector space generated by the basis {1, s1, · · · , sm, r1, · · · , rn}. This basis contains
1, si’s and ri’s as formal variables. Each equation aTi s+ bTi r = ci can be regarded as
an element of IM. We can thus interpret IM as the k-vector space of equations, and
by equation aTi s+ bTi r = ci we will mean the tuple of its coefficients in IM.

Definition 7.5.2. For every subset M of M (non-necessarily a subspace) we define
I(M) to be the smallest subspace of IM generated by the equations {aTi s + bTi r = ci}
that are satisfied by all points of M .

Proposition 7.5.3. For every M,M ′ ⊆M, we have I(M ∪M ′) = I(M) ∩ I(M ′).

Proof. Trivially, M ∪M ′ satisfies an affine equation e if, and only if, both M and M ′

satisfy e.

Dually, for every subset I of IM, we define V(I) to be the solution set in M to the
equations in I.

Proposition 7.5.4. The system (M,M) is a k-affine system if, and only if, M =
VI(M).

Proof. The operator VI can be easily shown to be closure operator on the lattice of
subsets of M. It sends a subset of M to the smallest affine subspace containing it. Its
fixed-points are then the k-affine subspaces of M. See also [Har13] Proposition 1.2,
(e) for a similar statement.

Thus knowing I(M), we can recover M whenever it is an affine subspace. More-
over, if I(M) = I(M ′), then M = M ′ (whenever M and M ′ are both affine subspaces,
of course).

Proposition 7.5.5. If M is the solution to the set of equations E := {aTi s+bTi r = ci},
then I(M) = 〈E〉.

Proof. Clearly 〈E〉 ⊆ I(M). Suppose 〈E〉 is a proper subspace of I(M), then
dim I(M) > dim〈E〉, and so VI(M) < dimV〈E〉. But by Proposition 7.5.4, we
have VI(M) = M = V〈E〉, contradicting the fact that 〈E〉 is a proper subspace of
I(M).

We then get:

Corollary 7.5.6. If M and M ′ are affine subspaces, then I(M∩M ′) = I(M)+I(M ′).

Proof. We have V(I(M) + I(M ′)) = M ∩M ′. The rest then follows by Proposition
7.5.5.
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The situation is a special case of that of systems defined by polynomial equations.
All the polynomials in the affine case have degree one. We thus trivially get more
mathematical structure and a greater flexibility to work with.

We similarly define IS to be the free vector space generated by {1, s1, · · · , sm}.
The projection π : M → S then induces an inclusion ι : IS → IM. The operator I
can act on the subsets of S, and the operator V act on the subsets of IS. In such a
case, (S, S) is also k-affine if and only if S = VI(S). We can then uniquely recover S
knowing I(S). The space IS defines a subspace of IM.

7.5.2 The lift to linear maps

Let M, S and R be finite dimensional vector spaces. Our behaviors will be affine
subspaces of their respective universa. For a k-affine system (M,M), we then define
the following lift:

Definition 7.5.7. We define L to be a functor that sends every affine subspace M
to:

hM :=

ISypι
IM/I(M)

i.e., the composition IS
ι−→ IM

p−→ IM/I(M), and to every order relation M ⊆ M ′, or
equivalently inclusion map M →M ′ to a morphism hM ′ ⇒ hM of linear maps:

IS
id−−−→ IS

pι

y ypι
IM/I(M ′) −−−→ IM/I(M)

Note that the inclusion M ⊆M ′ becomes a morphism hM ′ ⇒ hM in the opposite
direction. The roles of the kernel and the cokernel will then be reversed. The lift
encodes the behavior of the subsystem in the kernel:

Proposition 7.5.8. For every M , we have kerhM = I(M) ∩ IS.

Proof. We have e ∈ ker pι if, and only if, e ∈ IS and ιe ∈ I(M).

The kernel then encodes the behavior of the subsystem:

Proposition 7.5.9. For every M , we have that V(kerhM) ∩ S is π(M).

Proof. We have IS = I(R). Then I(M) ∩ IS = I(M) ∩ I(R) = I(M ∪ R). But
VI(M ∪ R) = π(M)⊕ R as a subspace of IM.

The lift also preserves construction, or interconnection, of systems. It however
flips the direction of the morphisms.

Proposition 7.5.10. The sequence 0⇒ hM+M ′ ⇒ hM ⊕hM ′ ⇒ hM∩M ′ ⇒ 0 is exact,
for every M and M ′.
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Proof. The sequence:

0→ IM/(I(M +M ′))→ IM/(I(M))⊕ IM/(I(M ′))→ IM/(I(M ∩M ′))→ 0

is exact. Indeed, for all affine subspaces M and M ′, we have I(M ∪M ′) = I(M) ∩
I(M ′) and I(M ∪M ′) = I(M +M ′). We also have I(M ∩M ′) = I(M) + I(M ′) (by
7.5.6).

Finally, cascade-like phenomena occur precisely when there is loss of exactness.
The loss of exactness is, however, on the right:

Proposition 7.5.11. For every M and M ′, we have π(M ∩M ′) 6= π(M) ∩ π(M ′)
if, and only if, the sequence 0→ kerhM+M ′ → kerhM ⊕ kerhM ′ → kerhM∩M ′ → 0 is
not exact at kerhM∩M ′.

Proof. We have V
(
(I(M)+I(M ′))∩IS) = π(M∩M ′) as I(M)+I(M ′) = I(M∩M ′).

We also have V(I(M) ∩ IS) = π(M). The result then follows as:

(I(M) + I(M ′)) ∩ IS 6= (I(M) ∩ IS) + (I(M ′) ∩ IS)

if, and only if π(M ∩M ′) 6= π(M) ∩ π(M ′).

The object encoding the potential for this loss is the cokernel.

Proposition 7.5.12. We have cokerhM = IM/(I(M) + IS).

Proof. The image of πι is (I(M) + IS)/I(M). The result then follows from the third
isomorphism theorem.

The cokernel represents the projection of the equations in play. Note that as all
equations in cokerhM are linear, they can be identified with a linear subspace of R.

7.5.3 Recovering exactness

To recover exactness, we let ρ(M) be I(M) + IS.

Definition 7.5.13. We define ρ(M) to be the set of equations {bTi r = 0 : aTi s+bTi r =
ci is in I(M)}.

We then obtain a characterization of the form:

Theorem 7.5.14. We have:

Iπ(M ∩M ′) = (IπM + IπM ′)⊕ ρ(M) ∩ ρ(M ′)/ρ(M +M ′)

Proof. Combine Proposition 7.3.14 and Proposition 7.3.15.

209



It is possible to construct a generating set for Iπ(M ∩M ′) using the character-
ization. Suppose we have a generating set BM , B′M and Bcommon for IπM , IπM ′

and ρ(M)∩ ρ(M ′)/ρ(M +M ′), respectively. For every element in Bcommon retrieve a
preimage e in I(M) and a preimage e′ in I(M ′), with respect to ρ. The set containing
BM , B′M and the equation e− e′ for every element of Bcommon will constitute a basis
for Iπ(M ∩M ′).

Link to the linear case If we set all the constants ci in the equations to 0, we
recover the linear case. Thus the dual process of defining a space of equations (or
equivalently the space of annihilators) gives us a means to recover a generating set
to the linear case too.

We also know that an affine subspace consists of a linear subspace whose every
element is offset by a fixed vector. If we know a point s in π(M +M ′), we can force
all offsets, or constants ci to be zero, then solve the problem as done in the linear
case. Every solution to the affine case, is then a solution to the linear case offset by
s.

7.6 Finite systems

The behaviors in this section will consist of finite sets, without any equipped structure.

Definition 7.6.1. A Willems system (U,B) is said to be finite if U is a finite set,
and B is a subset of U.

Let M, S and R be finite sets. The veil π : M → S is a surjective map that
projects an element m = (s, r) ∈ M into an element s ∈ S. Sets do not possess a
linear structure; the goal is to first lift our situation to become linear. This can be
achieved by encoding the elements of a set into the dimensions of a free module. As
our sets are finite, this encoding yields a finite dimensional objects.

7.6.1 Free constructions

Let R be any commutative ring with unit.

Definition 7.6.2. Given a set S, we denote by RS the free R-module generated by
the elements of S.

An element of RS can be formally thought of as a set map from S to R. Each
dimension encodes an element of S. The set maps can be added together and multi-
plied by elements of R. If S ′ ⊆ S, then we denote by 〈S ′〉 the linear subspace of RS

spanned by the elements of S ′. The space 〈S ′〉 is then isomorphic to RS′ . Finally,
the free construction is functorial in the following sense:

Proposition 7.6.3. Every map f : S → T lifts to a linear map f̄ : RS → RT on
free R-modules.

Proof. For s, s′ ∈ S, define f̄(αs+ α′s′) = αf(s) + α′f(s′) whenever α, α′ ∈ R.
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Specifically, the projection π : M→ S lifts to a linear map Π : RM → RS.

7.6.2 The lift to linear maps

We perform the following lift:

Definition 7.6.4. We define L to be a functor that sends every subset M of M to:

hM :=

RMy(Π,p)

RS ⊕ (RM/〈M〉)

and every order relation M ⊆ M ′, or equivalently inclusion map M → M ′ to a
morphism hM ⇒ hM ′ of linear maps:

RM id−−−→ RM

(Π,p)

y y(Π,p′)

RS ⊕ (RM/〈M〉) −−−→
(id,i)

RS ⊕ (RM/〈M ′〉)

The behavior of the subsystem is again encoded in the cokernel:

Proposition 7.6.5. For every M , we have cokerhM = RS/Π(〈M〉).

Proof. The image of (Π, p) is Π(〈M〉)⊕RM/〈M〉.

The lift also preserves the interconnection of systems:

Proposition 7.6.6. The sequence 0⇒ hM∩M ′ ⇒ hM ⊕ hM ′ ⇒ hM∪M ′ ⇒ 0 is exact,
for every M and M ′.

Proof. We have 〈M ∩M ′〉 = 〈M〉∩ 〈M ′〉 and 〈M ∪M ′〉 = 〈M〉+ 〈M ′〉. The sequence
0 → RM/〈M ∩M ′〉 → RM/〈M〉 ⊕ RM/〈M ′〉 → RM/〈M + M ′〉 → 0 is then exact.
Direct sum of exact sequences yields an exact sequence. The two rows of the obtained
ladder diagram are then easily seen to be exact.

Finally, cascade-like phenomena occur precisely when there is loss of exactness:

Proposition 7.6.7. For every M and M ′, we have π(M∩M ′) 6= π(M)∩π(M ′) if, and
only if, the sequence 0 → cokerhM∩M ′ → cokerhM ⊕ cokerhM ′ → cokerhM+M ′ → 0
is not exact at cokerhM∩M ′.

Proof. We have cokerhM∩M ′ = RS/Π〈M ∩M ′〉. Exactness on the left is lost if, and
only if, Π〈M ∩M ′〉 6= Π〈M〉 ∩ Π〈M ′〉.
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7.6.3 Recovering Exactness

We define ρ to be the map sending M into ρ(M) = kerhM .

Definition 7.6.8. We define ρ : M 7→ 〈{(s, r)− (s, r′) ∈ RM : (s, r), (s, r′) ∈M}〉.

Thus, if for every s there exists at most one (s, r) ∈ M , then ρ(M) is the 0
subspace of RM. One way to interpret ρ(M) is as a map from S to the subspaces of
RR. The module ρ(M) is then isomorphic to the direct sum of the images. We again
directly obtain a characterization of the form:

Theorem 7.6.9. For every M and M ′, we have:

(〈πM〉 ∩ 〈πM ′〉)/〈π(M ∩M ′)〉 = ρ(M ∪M ′)/(ρM + ρM ′)

Proof. Apply Proposition 7.3.14 and Proposition 7.3.15.

Note that in this case, the space (π〈M〉∩π〈M ′〉)/π(〈M〉∩〈M ′〉) is freely generated
by the element of the set π(M) ∩ π(M ′)− π(M ∩M ′).

The single set problem The same problem admits a formalization of a different
kind. Suppose S consists of a single element. Recovering π(M ∩M ′) is equivalent
to dually asking whether (M −M ′) ∪ (M −M ′) is equal to M or not. One can get
an answer to such a dual question through the following lift. The lift sends M to
〈m1 + · · · + mn〉 → RM/〈M〉. The kernel is R if, and only if, the set M is equal to
M.

7.7 Linear time-invariant systems

Let us fix a field k throughout this section. We define R to be the ring k[[z−1]] of
formal power series in the variable z−1 with coefficients in k. The elements in R are
series of the form

∑∞
i=0 aiz

−i with ai ∈ k. Such an element ought to be interpreted
as a discrete-time signal taking value ai in k at time i. Addition in R is given by
pointwise addition

∑
i aiz

−i +
∑

i biz
−i =

∑
i(ai + bi)z

−i, and multiplication is given
by convolution (

∑
i aiz

−i)(
∑

i biz
−i) =

∑
i(a0bi + · · ·+ aib0)z−i.

Definition 7.7.1. A Willems system (U,B) is said to be a linear time-invariant
(LTI) system if U is a free R-module Rn of dimension n, and B is an R-submodule
of U.

The system (U,B) is linear as αs+α′s′ ∈ B for every α, α′ ∈ k and s, s′ ∈ B. The
system (U,B) is time-invariant as z−1s ∈ B for every s ∈ B.

7.7.1 A lift to linear maps

Let M, S and R be finite-dimensional free R-modules. The veil π : M → S is a
surjective R-linear map that projects an element m = (s, r) ∈ M into an element
s ∈ S.
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Definition 7.7.2. We define L to be a functor that sends every submodule M of M
to:

hM :=

My(π,p)

S⊕ (M/M)

and every order relation M ⊆ M ′, or equivalently inclusion map M → M ′, to a
morphism hM ⇒ hM ′ of linear maps:

M id−−−→ M

(π,p)

y y(π,p′)

S⊕ (M/M) −−−→
(id,i)

S⊕ (M/M ′)

The lift encodes the behavior of the subsystem in the cokernel of the map:

Proposition 7.7.3. For every M , we have cokerhM = S/π(M).

Proof. The image of (π, p) is π(M)⊕M/M .

Proposition 7.7.4. The sequence 0⇒ hM∩M ′ ⇒ hM ⊕ hM ′ ⇒ hM+M ′ ⇒ 0 is exact,
for every M and M ′.

Proof. The proof is similar to that of the case of linear systems over fields. The
sequence 0→ M/(M ∩M ′)→ M/M ⊕M/M ′ → M/(M + M ′)→ 0 is exact. Direct
sum of exact sequences yields an exact sequence. The two rows of the obtained ladder
diagram are then easily seen to be exact.

Finally, cascade-like phenomena occur precisely when there is loss of exactness:

Proposition 7.7.5. For every M and M ′, we have π(M∩M ′) 6= π(M)∩π(M ′) if, and
only if, the sequence 0 → cokerhM∩M ′ → cokerhM ⊕ cokerhM ′ → cokerhM+M ′ → 0
is not exact at cokerhM∩M ′.

Proof. We have cokerhM∩M ′ = S/π(McapM ′). Exactness on the right is then lost if,
and only if, π(M ∩M ′) 6= π(M) ∩ π(M ′).

The object encoding the potential for this loss is the kernel.

Proposition 7.7.6. We have kerhM = {r ∈ R : (0, r) ∈M} is a submodule of R.

Proof. We have x ∈ kerhM if, and only if, π(x) = 0 and x ∈M .

We can then use this potential to recover the loss.
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7.7.2 Recovering Exactness

Similarly, let us define ρ such that M 7→ {r ∈ R : (0, r) ∈ M}. We have ρ(M) is
M ∩ {m : π(m) = 0}. We then get:

Theorem 7.7.7. The following sequence is exact:

0 −→ ρ(M +M)/ρ(M) + ρ(M ′) −→ S/π(M ∩M ′) −→ S/π(M) ∩ π(M ′) −→ 0

Proof. Apply Proposition 7.3.14 and Proposition 7.3.16.

The sequence however does not necessarily split as in Proposition 7.3.15. We
cannot thus get a direct sum characterization as that in the previous three sections.
Indeed, consider the following exact sequence:

0→ R/z−1R →M → R/z−1R → 0.

Without any additional information, the module M can be either R/z−1R⊕R/z−1R
or R/z−2R. The required information, to know which one it is, is encoded in the
maps. We however do not know the maps. To overcome such an ambiguity, let us
suppose that we know the module Mz−1 = M⊗R/z−1R. If Mz−1 is (R/z−1R)2, then
M is (R/z−1R)2. However, if Mz−1 is R/z−1R then M is R/z−2R.

Proposition 7.7.8. Let p be prime in R, and let N be a finitely generated R-module.
Given an exact sequence 0→M → N⊗R/pnR → P → 0 and (a presentation of) the
module N ⊗R/pn−1R, then N ⊗R/pnR is uniquely determined up to isomorphism.

Proof. As R is a principal ideal domain, we know that N is isomorphic to a direct
sum:

N = Rm ⊕R/(s0R)⊕ · · · ⊕ R/(slR)

where s0, · · · , sl are powers of primes. (See e.g., [Lan02] Ch. III, Theorem 7.3 and
Theorem 7.5 combined.) We also have:

R/(sR)⊗R/pnR = R/(sR+ pnR) =


R/pnR if s = 0
R/pmin{n,n′}R if s = pn

′

0 otherwise

Without loss of generality, we may then assume N to be isomorphic to:

N = Rm
⊕
i>0

(
R/piR

)di
for some non-negative integers m, d1, d2, · · · where finitely many are non-zero. We
then have:

N ⊗R/pnR =
(
R/pR

)d1 ⊕ · · · ⊕
(
R/pn−1R

)dn−1 ⊕
(
R/pnR

)m+dn+dn+1+···

If A is a module and c is a non-negative integer, let d(A, c) denote the largest d such
that (R/pcR)d is isomorphic to a submodule of A. We then get the following set of
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equations:

di = d(N ⊗R/pn−1R, i) for i < n− 1

dn−1 + d∞ = d(N ⊗R/pn−1R, n− 1)

d1 + 2d2 + · · ·+ (n− 1)dn−1 + nd∞ =
∑
i

id(M, i) +
∑
j

jd(P, i)

where d∞ = m + dn + dn+1 + · · · . The solution to this set of equations yields the
exponents needed to characterize N ⊗R/pnR.

This approach lends itself to a recursive characterization of the module N⊗R/pnR
when N is finitely generated. Regardless of the characterization, we still recover the
following corollaries.

Corollary 7.7.9. If (s, r) ∈ M and (s, r′) ∈ M ′ then: s ∈ π(M ∩M ′) if, and only
if, r − r′ ∈ ρM + ρM ′.

Corollary 7.7.10. We have π(M ∩M ′) = πM ∩ πM ′ if, and only if, ρ(M +M ′) =
ρM + ρM ′.

Corollary 7.7.11. If ρM + ρM ′ = R, then π(M ∩M ′) = πM ∩ πM ′.

Corollary 7.7.12. If ρ(M +M ′) = 0, then π(M ∩M ′) = πM ∩ πM ′.

Deciding membership can usually be achieved through the use of Gröbner bases.
Such a thread will not be pursued in this paper.

7.8 Algebraic systems

We fix an arbitrary field k. The field k does not have to be algebraically closed. Such
a fact will not have any implications on the development in this section.

Definition 7.8.1. A Willems system (U,B) is said to be an algebraic system over k
if U is the affine n-space kn and B is an algebraic set in U, namely the solution set
to a collection of polynomial equations with coefficients in k.

Of course, if M and M ′ are algebraic subsets of M, then both M ∩M ′ and M ∪M ′

are algebraic sets.
As done in the affine case, we will fix a basis forM denoted by {s1, · · · , sm, r1, · · · , rn}

consistent with the factorization, namely such that {s1, · · · , sm} is a basis for S and
{r1, · · · , rn} is a basis for R. An element of M can be seen to correspond to a pair
(s, r) where s and r are a linear combination of the si’s and ri’s, respectively.

7.8.1 Polynomial ideals

We denote by k[s1, · · · , sm, r1, · · · , rn] the ring of polynomials over the basis variables
{s1, · · · , sm, r1, · · · , rn} with coefficients in k. The ring k[s1, · · · , sm] is the polynomial
ring over the variables {s1, · · · , sm} with coefficients in k. For ease of notation, we
will denote k[s1, · · · , sm, r1, · · · , rn] by k[s, r] and k[s1, · · · , sm] by k[s].
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The projection π : M → S induces an inclusion map of rings ι : k[s] → k[s, r].
Given a subset M ⊆ M, we define I(M) to be the ideal of k[s, r] consisting of
polynomials vanishing over M .

Proposition 7.8.2. For every M and M ′ subsets of M, we have I(M ∪ M ′) =
I(M) ∩ I(M ′).

Proof. Trivially, a polynomial vanishing at M ∪M ′, then vanishes at M and at M ′.
See for instance [Har13], Proposition 1.2.

Similarly, given a subset I of k[s, r], we define the algebraic set V(I) to be the
solution set of the set I of polynomials.

Proposition 7.8.3. The system (M,M) is algebraic if, and only if, VI(M) = M .

Proof. The operator VI can be shown to be a closure operator on the lattice of
subsets of M. It sends a subset of M to the smallest algebraic containing it. Its
fixed-points are then the algebraic subsets of M. See also [Har13] Proposition 1.2, (e)
for a supporting statement.

Thus knowing I(M), we can recover M whenever it is an algebraic set.

Proposition 7.8.4. If M is the solution to the set E of polynomial equations, then
V(〈E〉) = V(I(M)) = M .

Proof. We have M = VI(M) by Proposition 7.8.3 and M = V(E) = V(〈E〉).

However, it is not necessarily the case that 〈E〉 = I(M). Such a fact will, however,
not cause us any issues. Indeed:

Proposition 7.8.5. For every subset I and I ′, we have V(I ∪ I ′) = V(I) ∩ V(I ′).

Proof. Trivially, a point satisfies I ∪ I ′ if, and only if, it satisfies both I and I ′.

Corollary 7.8.6. If M and M ′ are algebraic sets with M = V(I) and M ′ = V(I ′),
then V(I ∪ I ′) = M ∩M ′.

However, note that V(I ∩ I ′) is non-necessarily M ∪M ′.

7.8.2 A lift to linear maps

Let M, S and R be finite dimensional k-vector spaces. Our behaviors will be algebraic
sets of their respective universa. The veil π : M→ S is a surjective map that projects
an element m = (s, r) ∈ M into an element s ∈ S. The projection of an algebraic
set however need not be an algebraic set. Thus, when we refer to π(M), we will be
referring the algebraic closure of the set π(M).

We then define the following lift:

216



Definition 7.8.7. We define L to be a functor that sends every algebraic subset M
of M to:

hM :=

k[s]yπι
k[s, r]/I(M)

i.e., the composition k[s]
ι−→ k[s, r]

π−→ k[s, r]/I(M), and to every order relation
M ⊆M ′, or equivalently inclusion map M →M ′ to a morphism hM ′ ⇒ hM of linear
maps:

k[s]
id−−−→ k[s]

p′ι

y ypι
k[s, r]/I(M ′) −−−→ k[s, r]/I(M)

The map hM is linear in the following sense:

Proposition 7.8.8. The module k[s, r]/I(M) admits a k[s]-module structure, and
hM can be regarded as a k[s]-linear map of k[s]-modules.

Proof. The proof follows by restriction of scalars via ι : k[s]→ k[s, r]. Indeed, define
a k[s]-action on the k[s, r]-module M by α · m = (ια)m for α ∈ k[s]. The idea
extends to the linear map.

As in the affine case, the inclusion M ⊆ M ′ becomes a morphism hM ′ ⇒ hM in
the opposite direction. The roles of the kernel and the cokernel will again be reversed.
The lift then encodes the behavior of the subsystem in the kernel:

Proposition 7.8.9. For every M , we have kerhM = I(M) ∩ k[s] where I(M) and
k[s] are taken as k[s]-modules.

Proof. We have e ∈ ker pι if, and only if, e ∈ k[s] and e ∈ I(M).

The set-projection of an algebraic set need not yield an algebraic set. However, as
we are only working with algebraic systems, we would need to consider the algebraic
closure of the projected set. Indeed:

Proposition 7.8.10. For every algebraic subset M , we have that V(kerhM) (as a
subset of S) is the algebraic closure of π(M).

Proof. The statement is standard, see e.g., [CLO07] Ch 3 Section 2 Theorem 3.

The lift also preserves construction, or interconnection, of systems, but in a slightly
different sense. It however flips the direction of the morphisms.

Proposition 7.8.11. The sequence 0⇒ hM∪M ′ ⇒ hM⊕hM ′ ⇒
(
k[s]→ k[s, r]/(IM+

IM ′)
)
⇒ 0 is exact, for every M and M ′.
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Proof. The sequence:

0→ k[s, r]/I(M ∪M ′)→ k[s, r]/I(M)⊕ k[s, r]/I(M ′)→ k[s, r]/(IM + IM ′)→ 0

is exact as I(M ∪M ′) = I(M) ∩ I(M ′), see Proposition 7.8.2.

In this case, note that V(IM +IM ′) is M ∩M ′. Finally, cascade-like phenomena
occur precisely when there is loss of exactness. The loss of exactness is however on
the right:

Proposition 7.8.12. For every M and M ′, we have π(M ∩M ′) 6= π(M) ∩ π(M ′)
if, and only if, the sequence 0 → kerhM+M ′ → kerhM ⊕ kerhM ′ → ker

(
k[s] →

k[s, r]/(IM + IM ′)
)
→ 0 is not exact at ker

(
k[s]→ k[s, r]/(IM + IM ′)

)
.

Proof. Using Proposition 7.8.10, we get (IM+IM ′)∩k[s] = (IM∩k[s])+(IM ′∩k[s])
if, and only if, π(M ∩M ′) = π(M) ∩ π(M ′).

The object encoding the potential for this loss is the cokernel.

Proposition 7.8.13. We have cokerhM = k[s, r]/(I(M) + k[s]).

Proof. The image of πι is (I(M) + k[s])/I(M). The result follows by the third
isomorphism theorem.

It is important to keep in mind that all the modules in play are considered to be
k[s]-modules. Thus cokerhM is a k[s]-module containing all the equations in I(M)
with the terms containing only variables in s removed.

7.8.3 Recovering exactness

To recover exactness, we let ρ(M) be I(M) + k[s].

Definition 7.8.14. We define ρ(M) to be {r1p1 + · · · r2pn : pi ∈ k[s, r] and r1p1 +
· · · r2pn + q ∈ I(M) for some q ∈ k[s]}.

We then obtain a characterization of the form:

Theorem 7.8.15. The following sequence is exact:

0 −→ IπM + IπM ′ −→ I −→ ρ(M) ∩ ρ(M ′)/ρ(M ∪M ′) −→ 0

where I ∈ k[s] is such that V(I) = π(M ∩M ′).

Proof. Apply Proposition 7.3.14, and then Proposition 7.3.16.

As in the case of LTI systems, the exact sequences does not necessarily split. By
appropriately tensoring and localizing we can recover more refined information. This
approach will not be pursued in this paper.
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7.9 Concluding remarks and limitations

We conclude with three remarks. First, the development we carried in every case of
systems is very preliminary. The linear case has been the most elaborated. The in-
sight developed there also carries on, in different forms, to the other cases. Still, every
case on its own is open to a lot more scrutiny. Indeed, many consequences can be
further derived. Furthermore, structured instances of the problem—e.g., whenever we
understand well the common part between a system and a change—can lead to a lot
more intuition. Second, the systems throughout the paper live in the same universum.
The theory aims for more flexibility through the notion of exactness to interconnect
systems in different universa. Such a flexibility, and its benefits, are briefly discussed
in the case of linear systems. The theory also extends to interconnecting multiple
systems at the same time. The flexibility can be achieved by explicitly replacing in-
clusion relations between behaviors by morphisms between Willems systems. Finally,
the cascade-like situation developed in this paper falls within a more general theory
to understand cascade-like phenomena. The behavioral approach to system theory
provides us with one systems theoretic interpretation of the theory. We refer the
reader to the other chapters for the details.
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Chapter 8

Generativity and interactional
effects: the general theory

Abstract

The chapter exposes the emergence of interaction-related phenomena as a loss of
exactness. It introduces the notion of generativity, and its by-product generative
effects. These occur precisely when properties or features of a system behave badly
under interconnection. The chapter outlines, develops and exemplifies homological
methods to deal with such phenomena. The goal is to relate the behavior of the
interconnected system to that of its separate components despite the presence of such
phenomena.
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8.1 Introduction

Our principal concern goes into uncovering and understanding interaction-related
effects—termed, interactional effects—that emerge when several systems interact.
Our interest, in this respect, begins with understanding cascade-like effects. The
intuition behind cascade-like effects may be anecdotally described as that emerging
from a falling row of dominos. The fall of the first domino triggers the fall of the
second domino. All dominos then come toppling down by induction. The concern has
a good mathematical appeal, but it is also one that is becoming more pressing. With
the recent financial crises, power blackouts and socio-political turmoil, it is becoming
more essential to rigorously understand such phenomena. We however lack a solid
foundation going into the heart of the matters. More importantly we do not even
know what mathematical structure/pattern gives rise to the intuition present in such
phenomena. It is also valid to ask what kind of mathematics and thinking is required
to advance, at a fundamental level, the understanding of such problems. This chapter
exposes the emergence of interaction-related phenomena as a loss of exactness. It then
outlines, develops and exemplifies how to deal with such phenomena.

The chapter reintroduces the notion of generativity, and its byproduct generative
effects. Cascade effects can be seen as instances of generative effects. Such effects
are seen as not intrinsic to the system. They emerge from a separation between
what we decide is observable from the system and what is concealed from the system.
This separation is achieved by what we term a veil. The veil conceals parts of the
system, and leaves other parts, which we term the phenome, observable. The phenome
may be either a property, a feature or a part of the system. Generative effects
are then said to occur whenever if we modify a system, or make it interact with
another, we cannot explain the phenome of the newly formed system by only looking
at what is observable, namely the separate phenomes of the interacting components.
The mechanisms or parts concealed under the veil interact so as to produce new
observables. Thus cascading phenomena arise precisely whenever property or features
of systems do not behave well under interconnection.

From an engineering perspective, we want to understand the behavior of a com-
plicated system by understanding its separate components. Our perpetual desire is
that of a modular analysis: an analysis that can be separately performed on the sep-
arate components, and then combined to yield an analysis on the whole combined
system. The situations of interests, exhibiting cascade-like effects, however hinder
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by definition such a modularity, or compositionality. The question we pose then is:
can we recover compositionality through other means? More precisely, how can we
relate the phenome of the interconnected system to that of its separate
systems, despite the presence of interaction-related phenomena? Notions
of exactness, and particularly exact sequences, will enable us to link the behavior of
the big system to that of its separate components.

The notion of generative effects may be developed on two levels: a special level
and a general level. It may be formalized on a special level via the use of preordered
set, and particular order homomorphisms. In the case of preorders, generative effects
are seen to emerge from a certain Galois connection, induced by the veil, between the
space of systems and that of phenomes. Precisely, they arise whenever the veil fails to
commute with joins (i.e., taking least upper bounds). The development of generative
effects may also be performed on a more general level, through functorial means. The
order relation is replaced by hom-sets, and the notion of minimum is replaced by
that of universal arrows. In the functorial setting, generative effects emerge precisely
when there is loss of exactness. The primary reason for the generality is to set-up
a suitable foundation to characterize the extent of those effects, and to answer the
question posed above. The extent of the loss can be measured in abelian settings via
homological methods, and then used to cope with the effects. The veil is a left-exact
functor encoding the phenome, and its higher derived functor encode the generativity
of the system, its potential to produce interactional effects.

The chapter develops the theory of generativity at the general level.
It can be seen as a more involved functorial development of the ideas presented in
[Ada17a] and [Ada17b]. The chapter illustrates how functorial thinking on one end,
and homological ideas on the other, allow us to achieve an understanding, pertaining
to the interaction of systems, that seems elusive in engineering practice. The goal of
the effort is thus dual. On the engineering end, it outlines a trail of thinking that
we view essential in understanding interaction-related phenomenon. It introduces
mathematical techniques (and thinking) not overtly common in engineering practice,
especially those pertaining to the interaction of systems. On the mathematical end, it
presents pressing engineering applications for well developed and understood theories.
We hope that the ideas presented here open up a fertile ground to understand the
phenomena on a more essential level.

The outline.

The chapter begins by a review of generative effects in the special level. It then gener-
alizes to the functorial setting, and links the emergence of generative effects to a loss
of exactness. Generative effects are further discussed in the case of regular categories,
and then in the case of abelian categories. In the abelian case, the generativity (i.e.,
the systems’ potential to produce effects) may then be captured by derived functors.
Most formulations of generative effects are often not of an abelian nature. The ap-
proach is then to lift our formulation to an abelian setting. We define the notion
of an abelian veil lift and show that every veil admits an abelian veil lift. The goal
onward is to find good lifts for various classes of situations. The chapter lays out the
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fundamental structure into understanding and dealing with generative effects.

8.2 Review of the special level.

We review the notion of generative effects as developed through the use of preorders.
The concepts in this section have been introduced in [Ada17a] and [Ada17b]. Those
two references contain more examples and intuition than what we can account for in
this section. We urge the reader to skim through some of their examples, if intuitive
examples seem essential yet lacking in this section.

8.2.1 Review: Interconnection of systems.

The space of systems consists of a preorder (S,≤), namely a set S equipped with a
binary relation ≤ that is reflexive and transitive. The reader may translate, if wished,
the notion of preorder to a small category where every hom set hom(a, b) consists of
at most one morphism. The set hom(a, b) is non-empty if, and only if, a ≤ b.

Definition 8.2.1. A system s is said to be a subsystem, or a part, of s′ if s ≤ s′.

A finite collection of systems interacts and yields its least upper bound in S, if
it exists. We will suppose that every finite collection of elements (possibly empty)
admits a least upper bound, and will thus refer to our preorder as finitely cocomplete.
As every pair of elements admit a least upper bound, the order relation will also be
antisymmetric, and thus a partial order. Indeed, if a ≤ b, then the least upper bound
of a and b exists and is b. If a ≤ b and b ≤ a, we then get a = b by uniqueness of the
least upper bound.

We denote by a ∨ b the least upper bound of a and b. The partially ordered
set (S,≤) is then isomorphic to a join semilattice (S,∨). Interconnection of systems
consists of taking joins in the semilattice.

Definition 8.2.2. The finite collection of systems s1, · · · , sm interact, or are inter-
connected, to yield their least upper bound s1 ∨ · · · ∨ sm.

There exists a unique way of interconnecting two systems, and it is via the ∨ op-
eration. The space of systems is then a join semilattice (S,∨) that admits finite joins.
It is however important to keep in mind that the order relation is more fundamental
than the join operation.

Remark. The semilattice S always admits a minimum element, as it is the least
upper bound of the empty subset of S.

A systems-theoretic interpretation

We may recover a physical interpretation through the ideas of the behavioral approach
to systems theory. A Willems’ system is pair (U,B) of sets where the set U, termed
the universum, denotes the set of all possible outcomes or trajectories, and the set
B ⊆ U denotes the set of trajectories allowed by the dynamics or the restrictions of

224



the system. Given two systems (U,B) and (U,B′) with the same universum, their in-
terconnection yields the system (U,B∩B′) whose behavior keeps only the trajectories
allowed by both separate behaviors.

The set of behaviors—considered, for simplicity, to be the set of subsets of U—may
be ordered by reverse inclusion to yield a lattice. Indeed, (U,B) is a subsystem of
(U,B′) if, and only if, B ⊇ B′ i.e., (U,B) is less restricted than (U,B′). Interconnection
then corresponds to the join of the lattice, corresponding to set-intersection. We refer
the reader to [Wil07], [PW98] and [Ada17d] for more details.

Remark. It also helps to think of a ≤ b as a being an approximation or a par-
tial description of b. Descriptions can be combined to then yield more elaborate
descriptions. This remark touches upon some intuition in Domain Theory.

8.2.2 Review: Veils and generative effects.

A theory of interconnection by itself cannot account for interactional effects. Such
effects are seen to arise from a separation between what we consider to be observable
from the system and what we consider to be concealed. This separation is achieved
by covering the system with a veil. The veil is intended to hide features of the system
at hand, and leave other parts, termed phenome, bare and observable. Interactional
effects emerge whenever what remains visible cannot explain the visible happenings
when the systems interact.

Definition 8.2.3. A veil on System is a pair (P,Φ) where P is a join semilattice
(P,≤,∨), and Φ : System→ P is a map such that:

V.1 The map Φ is order-preserving, i.e., if s ≤ s′, then Φs ≤ Φs′.

V.2 Every phenome admits a simplest system that explains it, i.e., the set {s : p ≤
Φs} has a (unique) minimum element for every phenome p.

If Φ is surjective, then the role of the veil can be interpreted as concealing mech-
anisms that are present in the system. Two systems are identified whenever they are
identical outside what we wish to hide. If Φ is injective, then the role of the veil can be
interpreted as forgetting characteristics of the systems. By forgetting characteristic,
we are embedding our space of system into a larger space of possible systems. Con-
versely, any map Φ satisfying V.1 and V.2 admits an epi-mono factorization where
both factors satisfy V.1 and V.2. In this sense, every veil is achieved through a
combination of concealing mechanisms and forgetting characteristics of systems.

Definition 8.2.4 (Generative effects). A veil (P,Φ) is said to sustain generative
effects if Φ(s ∨ s′) 6= Φ(s) ∨ Φ(s′) for some s and s′ in System.

The condition V.1 is essential to preserve the order structure in the situation. The
condition V.2 is essential to connect the emergence of generative effects to closure and
kernel operators. We view such phenomenon emerging fundamentally from closure
and kernel operators. The condition V.2 can also be relaxed, paying a price through
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a gain in complexity and a loss of structure. We refer the reader to [Ada17b] for
details and intuition on relaxing V.2, and on the connection of veils and generative
effects to closure and kernel operators.

An instance of generative effects in the behavioral approach.

Let (U,B) be a Willems’ system. We are interested in understanding the behavior of
a subsystem of (U,B) as the greater system undergoes some change. Mathematically,
we are given a projection, a surjective set-map π : U → S. The subsystem of (U,B)
is then (S, πB). As discussed, given two systems (U,B) and (U,B′) with the same
universum, their interconnection yields the system (U,B ∩ B′) whose behavior keeps
only the trajectories allowed by both separate behaviors. A change in (U,B) is then
regarded as a system (U, C), and incurring the change consists of constructing the
system (U,B∩C). The projection π sets up a veil from (2U,⊇) to (2S,⊇). Generative
effects are sustained by the veil as:

π(B ∩ C) 6= π(B) ∩ π(C)

for some B and C. Indeed, changes in the greater system outside the subsystem
can indirectly affect the subsystem. We revisit this situation in Subsection 8.5.4 and
characterize the effects in concern.

8.3 Functorial generative effects.

Functorial thinking leaks in once we accept two observations. First, the inequali-
ties in the preorder can be seen as degenerate morphisms between systems. Second,
minimum elements are degenerate versions of universal arrows. The functorial devel-
opment in this section partially parallel that in the case of preorders.

8.3.1 Functorial interconnection of systems.

The space of systems will be a finitely cocomplete category System. A system is then
an object in System. Interaction or interconnection of systems amounts to taking
finite colimits.

Definition 8.3.1. An interaction blueprint, or simply a blueprint, consists of a pair
(J , B) where J is a finite category, and B : J → System is a functor.

The blueprint dictates which systems will interact, and how they will intercon-
nected. Interaction along a blueprint (J , B) will be given by a universal cocone.
Let ∆ : System → SystemJ be the diagonal functor. A cocone of B is a pair
〈s, B ⇒ ∆s〉. The colimit of B is a universal cocone 〈lim−→B,B ⇒ ∆ lim−→B〉, an initial
object in the category of cocones of B.

Definition 8.3.2. The system resulting from the interaction along a blueprint (J , B)
is the object lim−→B of the colimit of the diagram B.
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As System admits finite coproducts, lim−→B is functorially isomorphic to the (ob-
ject of the) coequalizer of the pair:

qu∈Arr(J )B(domu) qj∈Obj(J )B(j) (8.1)

where the arrows are induced by the morphisms:

B(domu)
inB(dom u)−−−−−−→ qj∈Obj(J )B(j)

B(domu)
B(u)−−→ B(codomu)

inB(codom u)−−−−−−−→ qj∈Obj(J )B(j).

See, for instance, in [AGV72] Exposé i, the proof of Proposition 2.3 and its correspond-
ing section, for more information. We may then always think of system interaction
as coequalizing a pair of maps. The change of blueprints, however, going from B to
a pair of parallel maps will have some implications as we will see in later sections.

Regardless, we will often refer back to a category J of the form • ←− • −→ •.
A blueprint B is then a span in System, and interconnection amounts to taking
pushouts. The interconnected system is then the object of the pushout. If the
blueprint B consists of monos, then, intuitively, interconnection amounts to gluing
two systems along a common subsystem.

Definition 8.3.3. Let s be a system in System, then:

i. A subsystem of s is a pair 〈s′, s′ → s〉 where s′ → s is monic.

ii. A controlled-system from s is a pair 〈s′′, s→ s′′〉 where s→ s′′ is epic.

These notion can be further refined with additional properties, e.g. regularity
conditions. Such refinements however will not be considered in this chapter.

Revisiting the behavioral-approach interpretation.

Instead of defining a system as a pair (U,B), as done in the behavioral approach,
we may explicitly think of it as an injective map B → U (or an arbitrary map for
generalized systems). We may then recast the behavioral approach to systems theory
into an arrow category, e.g., Set2. Interconnection of systems as seen through variable
sharing consists of taking pullbacks—or dually pushouts, and generally colimits—in
the arrow category. The physical notions of subsystem and controlled-system (dually)
coincide with monos and epis, respectively, in the arrow category. We refer the reader
to [Ada17d] for details on the interpretation through the lens of injective maps, and
to [PW98] and [Wil07] for a further treatment of the behavioral approach.

8.3.2 Functorial veil and generative effects.

The veil is intended to conceal parts of the systems, and leave the phenome bare
and observable. As phenomes are regarded as partially-observed systems, they are
in themselves systems. They thus live in a finitely cocomplete category and admit a
notion of interconnection through colimits.
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Definition 8.3.4. A veil is a pair (P,Φ) of a finitely cocomplete category P , and a
functor Φ : System→ P , such that:

V.2. For every object p in P , the comma category (p ↓ Φ) whose objects are the
morphisms p→ Φs with s in System admits an initial object.

The universal arrows in V.2. induce a left adjoint to the functor Φ.
Indeed, every veil gives rise to an adjunction between System and the category of
phenomes P . Monads and comonads also provide a good source of veils and intuition.
Comonads on System give rise to veils that are interpreted to conceal mechanisms in
the systems. Dually, monads whose Eilenberg-Moore category corresponds to System
give rise to veils that are interpreted to concealing characteristics in the systems. We
refer the reader to [Ada17b] for a thorough discussion of these interpretations, in the
case of preorders.

If (P,Φ) is a veil, and (J , B) be an interaction blueprint, then the funtor Φ
induces a (unique) map lim−→ΦB → Φ lim−→B in P . Indeed, Φ lim−→B defines a cocone
over ΦB, and lim−→ΦB defines the universal cocone over ΦB, i.e., the initial object in
the category of cocones.

Definition 8.3.5 (Generative Effects). A veil (P,Φ) is said to sustain generative
effects if, and only if, the map lim−→ΦB → Φ lim−→B is not an isomorphism for some
blueprint (J , B).

Generative effects are thus in play whenever there is a discrepancy between the
phenome of the interconnected system and the interconnection of the phenomes of
the subsystems.

Notation 8.3.6. To make the category of phenomes P explicit in the chapter, as
done with System, we will often refer to P as Phenome.

8.3.3 Generative effects in regular categories.

This discrepancy is more structured when the categories in play are more structured.
This subsection provides a more refined understanding of lim−→ΦB → Φ lim−→B in the
case of regular categories.

Recall that a kernel pair of an arrow f : a → b is a (universal) pair of parallel
arrows (k1, k2) making the following diagram a pullback square:

k
k1−−−→ a

k2

y f

y
a

f−−−→ b

A regular epimorphism is an arrow that is a coequalizer for some parallel pair of
arrows. In this case, a regular epimorphism is the coequalizer of its own kernel pair.

A category is said to be regular (in the sense [Bar71] Ch. 1) whenever (i) the
kernel pair of every map exists and admits a coequalizer (ii) regular epimorphisms
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are preserved by pullbacks. Regular categories include for instance preorders, abelian
categories, categories of algebras over monads, toposes, functor categories of regular
categories, and slices of regular categories. Their main feature, that we care about in
this chapter, is that every arrow in a regular category admits a factorization as me,
a regular epimorphism e followed by a monomorphism m.

Notation 8.3.7. We will denote, in diagrams, a regular epimorphism by a double-
headed arrow and a monomorphism by a tailed arrow. Thus a regular-epi/mono
factorization me of a map, where e is a regular epimorphism followed by a monomor-
phism m is drawn as:

· · ·e m

Let Phenome and System be regular categories, and let Φ : System→ Phenome
be a veil. As finite colimits can be expressed as coequalizers, we consider in this sub-
section J to be:

• •

Such a consideration may come at some cost of generality, and we discuss this later in
this section. A blueprint then consists of two parallel arrows having the same domain
and the same codomain. Let us consider the blueprint B:

a b
f

g

If h is its coequalizer, then B factors through the kernel pair of h, and we get:

a b lim−→B

c

f

g

h

Let us denote the kernel pair of h by the blueprint, or diagram, Bker-pair, then:

Proposition 8.3.8. The following diagram commutes:

lim−→ΦBker-pair

Φ(a) Φ(b) lim−→ΦB Φ(lim−→B)

Φ(c)

In particular, the arrow lim−→ΦB → Φ lim−→B admits a regular-epi/mono factorization:

lim−→ΦB lim−→ΦBker-pair Φ(lim−→B) .
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Proof. The proof will mostly expound the epi-mono factorization of lim−→ΦB → Φ lim−→B.
The rest of the diagram is immediate. Consider a regular-epi/mono factorization of
Φ(b)→ Φ(lim−→B) as:

Φ(b) d Φ(lim−→B)e m .

We claim that the regular epi e coequalizes ΦBker-pair. To show that, we only need
to show that ΦBker-pair is the kernel pair of e. As the veil Φ preserves kernel pairs
(being a right adjoint), the diagram ΦBker-pair is the kernel pair of Φ(b)→ Φ(lim−→B).
Commutativity (i.e., Φ(b)→ d is a cocone over ΦBker-pair) then follows because m is
monic. Universality also follows directly. Indeed, if e coequalizes some parallel arrows
Parrow, then Φ(b) → Φ(lim−→B) is a cocone over Parrow. The pair Parrow then factors
through ΦBker-pair by universality, and the factoring arrow has to be unique.

The map Φ(b) → lim−→ΦBker-pair is a cocone over ΦB, and thus factors through
Φ(b) → lim−→ΦB. The unique map lim−→ΦB → lim−→ΦBker-pair has to be a regular epi-
morphism: otherwise the factorization of Φ(b)→ lim−→ΦBker-pair would include a non-
trivial mono, contradicting the fact that it is a regular epimorphism.

Thus the aggregate of the phenomes coming from the separate systems can be
seen always to appear in quotient form in the phenome of the interconnected system.
In particular:

Corollary 8.3.9. If B is a kernel pair, then lim−→ΦB → Φ lim−→B is a monomorphism.

Proof. If B is already a kernel pair, then lim−→ΦB → lim−→ΦBker-pair is an iso.

However, generative effects are sustained whenever the phenome of the intercon-
nected system cannot be explained by the aggregate of the phenomes coming from
the separate systems.

Corollary 8.3.10. If B is a kernel pair, then lim−→ΦB → Φ lim−→B is an isomorphism
if, and only if, it is a regular epimorphism.

Proof. In a regular category, every arrow that is both a regular-epimorphism and a
monomorphism is also an isomorphism.

In some concrete categories, such as Set and R-Mod, the epimorphisms coin-
cide with surjective maps. Generative effects are then sustained, in such categories,
precisely when points in Φ lim−→B fail to admit preimages in lim−→ΦB.

In the case where the categories are abelian (with adequate properties), we can
quantify this failure, and use this quantification to relate the phenome of the in-
terconnected system to that of its subsystem, despite the presence of interactional
effects.

230



Remark. The diagram in Proposition 8.3.8 as well as the statements that follow
only (directly) apply to the case where blueprints are parallel arrows. Of course, every
colimit can be transformed to a coequalizer of parallel arrows. This transformation
however does not always yield the same lim−→ΦB. The main reason is that coproducts
are not preserved by the veil. This transformation does not even make much sense,
although legitimate, in some regular categories. As an extreme example, consider
doing such transformations in preorders, seen as categories.

It is possible to achieve a similar characterization for other class of colimits, mainly
pushouts. But the chapter will not pursue such a characterization because such re-
strictions disappears in cases of interest. Specifically, in the case of abelian categories
the veils are additive and preserve biproducts.

8.3.4 Coveil and cogenerative effects.

The development may be carried out by reversing the arrows. We would then arrive at
the notion of cogenerative effects. Let System be a finitely complete category. Given
an interaction blueprint (J , B). Cointerconnection consists of taking limits lim←−B. A
coveil is a functor System → Phenome that admits a right adjoint. Cogenerative
effects are then sustained whenever the coveil does not commute with limits. Other
dual statements can be recovered accordingly.

We can further devise a contravariant version of generative effects. This chapter
will not pursue this direction.

8.3.5 Recovering the special level.

One immediately recovers the special level of the theory by directly regarding a pre-
order as a category. All the development instantiates without change to the case of
preorders.

There is however another more interesting means to recover the special level.
Lattices will often emerge by considering sub-objects or quotient-objects of specific
objects in a category. Thus, if we pick a particular system, its parts form a lattice
and those parts can be joined to partially reconstruct the whole system. The first
step towards such a view considers slice categories. Recall that if C is a category, and
c0 is an object of C, we denote by C/c0 the category whose objects are the arrows
c→ c0, and morphisms are corresponding commutative triangles.

Proposition 8.3.11. Let Φ : System→ Phenome be a veil, and let s be an object
of System. The veil Φ induces a veil:

Φ/s : System/s→ Phenome/Φs

Proof. Let F be the left adjoint of Φ. The left adjoint of Φ/s sends p→ Φ(s) to the
composite map F (p)→ FΦ(s)→ s where FΦ(s)→ s is the counit of the adjunction
F a Φ.
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Let (System/s)mono and (Phenome/Φs)mono be the respective subcategories of
System/s and Phenome/Φs whose objects are the monomorphisms in System and
Phenome. Then:

Proposition 8.3.12. The restriction of Φ/s to (System/s)mono induces a functor:

(Φ/s)mono : (System/s)mono → (Phenome/Φs)mono

Proof. Right adjoints preserve monomorphisms.

Let us now suppose that the category System is regular.

Proposition 8.3.13. If System is regular, then the functor (Φ/s)mono is a veil.

Proof. Let F/Φs be the left adjoint of Φ/s. The left adjoint of (Φ/s)mono sends
an arrow c → Φs to the monic component in the regular-epi/mono factorization of
(F/Φs)(c→ Φs). The details are as follows. For clarity of notation, let 1 denote Φs.
We show that every triangle:

1

p Φx

in (Phenome/Φs)mono factors through a universal arrow (or triangle):

1

p Φsuniversal Φx

As Φ/s admits a left adjoint, we know that every arrow p → Φx factors through a
universal arrow p → Φsfree in the slice categories considered. Consider a regular-
epi/mono factorization of the arrow sfree → s in System. We get:

s

im(sfree)

sfree x

The dotted monic arrow arises from the commutativity of the diagram and the
uniqueness of a regular-epi/mono factorization. Finally, returning to our diagram
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in Phenome/1 we get:

1

p Φ im(sfree) Φ(x)

Φ(sfree)

Every arrow p→ Φ(x) then factors through p→ Φ im(sfree).

In this case, the left adjoint of (Φ/s)mono need not coincide with the restriction of
the left adjoint of Φ/s.

We have recovered a lattice of subobjects from a larger category. The opposite
direction of embedding a lattice into a larger category can be also be investigated.
This subject will be the concern of the last section on veil-lifts.

8.4 In the Abelian case.

We suppose in this section that System and Phenome are abelian categories. In an
abelian setting, interconnection of systems leads to exact sequences, and generative
effects becomes synonymous to a loss of exactness once the veil is applied.

8.4.1 Interconnection as exact sequences.

In an abelian setting, we may express interconnection of systems through exact se-
quences. For instance, consider the commutative diagram in System:

A B C
f

g

h

The map h is the coequalizer of (f, g) if, and only if, the sequence:

A
f−g−−−→ B

h−−−→ C −−−→ 0

is exact. Colimits can also be expressed as coequalizing parallel pairs of arrows, as
we have seen in Equation (8.1). In turn, we can then recover an exact sequence from
a colimit.

In the case of pushouts, namely where J is of the form • ←− • −→ •, we get the
following characterization:
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Proposition 8.4.1. A square diagram in System,

A
c−−−→ C

b

y c′

y
B

b′−−−→ D

is a pushout square if, and only if, the sequence:

A
(b,c)−−−→ B ⊕ C b′−c′−−−→ D −−−→ 0

is exact. Exhaustively, the square diagram is:

i. a commutative square if, and only if, A
(b,c)−−→ B

b′−c′−−−→ C is exact.

ii. a pullback square if, and only if, 0→ A
(b,c)−−→ B

b′−c′−−−→ C is exact.

iii. a pushout-pullback square if, and only if, 0→ A
(b,c)−−→ B

b′−c′−−−→ C → 0 is exact.

Proof. The statement can be derived using the transformation in Equation 8.1. The
statement and a proof of it can also be found in [Fre64] Proposition 2.53.

Thus, interconnection of systems will generally give us an exact sequence:

A −−−→ A′ −−−→ A′′ −−−→ 0

In case A → A′ happens to be injective, we obtain a short exact sequence. If not,
we may obtain an epi-mono factorization through the image of A → A′ and recover
a short exact sequence. Such a factorization will have implications on the phenome
as we have seen in Proposition 8.3.8. Some of those implications will be discussed in
the next subsection.

8.4.2 Generative effects as a loss of exactness.

Interconnection of systems has then been reduced to taking cokernel of maps. Gener-
ative effects will be sustained whenever the cokernel is not preserved when applying
the veil.

Proposition 8.4.2. Let B be a blueprint, and let Bparallel be the parallel pair of
arrows: ⊕

u∈Arr(J )B(domu)
⊕

j∈Obj(J ) B(j)

Then lim−→ΦB is functorially isomorphic to lim−→ΦBparallel.

Proof. The veil is an additive functor and thus preserves biproducts.

Of course, the coequalizer of parallel arrows is the cokernel of their difference. As
a byproduct, we can reduce generative effects to a notion on exact sequences.
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Proposition 8.4.3. A veil sustains generative effects if, and only if, for some A→
A → A′′ → 0 exact, the sequence ΦA → ΦA′ → ΦA′′ → 0 is not exact at either ΦA′

or ΦA′′.

Proof. Reduce a blueprint B to a corresponding parallel arrow (f, g), and then to
an arrow f − g. We have that lim−→B is isomorphic to coker(f − g), and lim−→ΦB
is isomorphic to coker Φ(f − g). Generative effects are sustained if for some exact
sequence A → A′ → A′′ → 0, the map Φ(A′) → Φ(A′′) is not the cokernel of
Φ(A) → Φ(A′). In such a case, either the map is not epi or if it is epi it is the
cokernel of some other map. The sequence ΦA→ ΦA′ → ΦA′′ → 0 is then not exact
either at ΦA′′ or at ΦA′, respectively. The converse follows by definition.

Note that the sequence ΦA → ΦA′ → ΦA′′ → 0 may not be exact at both ΦA′

and ΦA′′. The implications of such a fact will become clearer through Proposition
8.4.7 and the discussion following it.

If System and Phenome are abelian, then the veil Φ is an additive left-exact
functor. Indeed, the functor Φ admits a left adjoint. When we restrict to short exact
sequence, exactness is always preserves on the right and the middle.

Proposition 8.4.4. Let (P,Φ) be a veil and let 0 −→ A −→ A′ −→ A′′ −→ 0 be a
short exact sequence in System, then 0 −→ ΦA −→ ΦA′ −→ ΦA′′ −→ 0 is always
exact at ΦA and ΦA′.

Proof. This follows from the left-exactness of Φ.

Generative effects are then sustained by the veil whenever exactness is not pre-
served on the right, namely whenever Φ fails to be right-exact.

Proposition 8.4.5. A veil (P,Φ) where P is abelian sustains generative effects if,
and only if, for some exact sequence 0 −→ A −→ A′ −→ A′′ −→ 0 in System, the
sequence 0 −→ ΦA −→ ΦA′ −→ ΦA′′ −→ 0 is not exact at ΦA′′.

Proof. Suppose Φ sustains generative effects, then there is some exact sequence A
f−→

A′ → A′′ → 0 where ΦA → ΦA′ → ΦA′′ → 0 is not exact. Consider an epi-mono
factorization of f : A→ A′ as:

A
e−→ im(f)

m−→ A′.

Then 0 → im(f) → A′ → A′′ → 0 is exact. If 0 → Φ im(f) → ΦA′ → ΦA′′ → 0 is
not exact at ΦA′′, then we are done. Otherwise, consider the sequence:

0→ ker(e)→ A→ im(f)→ 0,

then 0→ Φ ker(e)→ ΦA→ Φ im(f)→ 0 will not be exact at Φ im(f). The converse
follows by definition.

The loss of exactness indicates that the map ΦA′ → ΦA′′ is not epi despite the
fact that A′ → A′′ is epi.
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Corollary 8.4.6. A veil (P,Φ) sustains generative effects if, and only if, Φ does not
always send epimorphisms to epimorphisms.

Proof. If Φ sends epis to epis, then short exact sequences are preserved. Conversely,
let f : B → C be an epi such that Φf is not an epi, and construct the exact sequence:

0→ ker f → B
f−→ C → 0

Applying Φ to the sequences destroys exactness on the right.

The loss exactness is crucial for interactional effects. It should not be seen as a
nuisance, but rather as precisely the reason why we arrive to such an intuition in the
first place. Thus our goal is not to omit it, but rather to cope with it and understand
it.

One however needs to be careful while moving from right-exact sequences to short
exact sequences. The care is mostly to be taken when intuitively relating loss of
exactness to generative effects. Specifically, suppose the veil is applied to some right-
exact sequence, causing a loss of exactness on the right. That exactness on the
right however may be preserved if we first factor the sequence into a short-exact
sequence, instead of it being only right-exact. This fact will have implications on
what to interpret as generative effects, and would push for more refined notions of
such effects.

For instance, consider a right-exact sequence:

A A′ A′′ 0

im f

f

e m

The care can be exemplified by considering the following diagram:

Proposition 8.4.7. The following diagram commutes:

im Φf coker Φm

ΦA ΦA′ coker Φf ΦA′′

Φ im f

Φe Φm

Proof. Most of the diagram can be deduced from Proposition 8.3.8, by expressing
certain monic arrows h as parallel arrows (h, 0). The additional component is the
map im Φf → Φ im f . The map is obtained through the uniqueness of the epi-mono
factorization of Φ(e).

If Φ(e) is epic, then im Φf → Φ im f is iso. It then follows that coker Φf →
coker Φm is iso. Otherwise, the cokernel of Φf can in general be different then the
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cokernel of Φm. Although exactness is lost when applying the veil to a right-exact
sequence, it may not be lost if we factor it into a short exact sequence first. Indeed,
although the sequence:

ΦA→ ΦA′ → ΦA′′ → 0 (8.2)

may not be exact at ΦA′, the sequence:

Φ im(A→ A′)→ ΦA′ → ΦA′′ → 0 (8.3)

may be exact. This always happens whenever ΦA′ → ΦA′′ is epi, i.e., whenever Φ
preserves A′ → A′′ as an epi. On another end, if (8.2) is not exact at ΦA′′ then (8.3)
will also not be exact at ΦA′′. And in the case where (8.2) is further exact at ΦA′,
all the generative effects is encoded in the loss of exactness of ΦA′′.

In light of this note, depending on our application, we might want to refine the
notion of generative effects accordingly. For instance, if not all blueprint are consid-
ered as valid interconnection patterns, the notion of generative effects can be revisited
to capture a loss with respect to only the desired one. This chapter will not develop
such refinements.

8.4.3 Generativity, derived functors and universality.

Let System be an abelian category with enough injectives, and let (Phenome,Φ)
be a veil with Phenome abelian. As Φ is left-exact, it admits right derived functors
RnΦ. Recall that given an object S in System, we pick an injective resolution:

0→ S → I0 → I1 → I2 → · · ·

We recover a complex:

0→ Φ(I0)→ Φ(I1)→ Φ(I2)→ · · ·

and then define RiΦ(S) to be the ith cohomology object of the complex. Note that
we always have R0Φ(A) = Φ(A).

Proposition 8.4.8. The right derived functors R∗Φ form a cohomological δ-functor.

Proof. A proof (of a dual statement) may be found in [Wei95] Theorem 2.4.6.

Given an exact sequence:

0→ A→ B → C → 0

in System, we then recover a long exact sequence:

0→ Φ(A)→ Φ(B)→ Φ(C)→ R1Φ(A)→ R1Φ(B)→ R1Φ(C)→ R2Φ(A)→ · · ·

Thus the first derived functor encodes a systems’ potential for generative effects,
namely its generativity. This idea can be further expanded, worked on and gener-
alized. Our goal is to present the essentials of the theory.
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The derived functors encode at least the information we need to cope with gener-
ative effects. They conversely get rid of all other information we do not need to cope
with generative effects. They are universal objects:

Proposition 8.4.9. The right derived functors R∗Φ form a universal δ-functor.

Proof. A proof (of a dual statement) may be found in [Wei95] Theorem 2.4.7.

The first derived functor, directly responsible for measuring the generativity of
the system, can be further seen to be minimal in the following sense:

Proposition 8.4.10. Let T 0 be a δ-functor such that T 0 ' Φ, and let {αn : RnΦ→
T n} be the unique morphism of δ-functors extending the identity functor T 0 ' Φ.
Then the morphisms of α1 are monic.

Proof. Let A be an object in System. We can pick an exact sequence:

0→ A→ I → C → 0

where I is injective. The object C is then the cokernel of A → I. We can then
construct the following commutative diagram:

0

K

ΦI ΦC R1ΦA 0

ΦI ΦC T 1A

' '

δ

α

The rows and columns are exact. The object R1ΦI is 0 as I is injective. This explains
the 0 on the right of the diagram. Let us consider the smallest abelian subcategory
of Phenome generated by the objects and arrows of the diagram. The generated
abelian subcategory is small, and admits, via the Freyd-Mitchell embedding, an exact
fully-faithful embedding into the category R-Mod of R-modules for some ring R. Let
then a ∈ R1ΦA be such that αa = 0. As δ is epi, a admits a preimage c in ΦC. But
c belongs to the kernel of ΦC → T 1A, and thus to the image of Φ(I) → Φ(C) by
exactness. By exactness of Φ(I) → Φ(C) → R1ΦA → 0, we have that c belongs to
the kernel of δ and thus a = δc = 0. The map α is then a mono, and thus K is
the zero object. As the embedding is exact, we have that K is the zero object in
Phenome. The arrow α is then monic in Phenome.

Every other piece of information that is used to (directly) cope with generative
effects contains those given by the first derived functor. In some engineering applica-
tions, the veils will be such that higher cohomology objects vanish. In two particular
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applications, expounded in the next section, only the first derived functors are non-
trivial.

Revisiting the epi-mono factorization.

We refer back to the diagram in Proposition 8.4.7, and ask the question: when is
coker Φf → coker Φm an iso? Building on the diagram, being iso then implies that
all the generative effects are encoded in the loss of exactness at the rightmost object.

Proposition 8.4.11. The arrow coker Φf → coker Φm is an isomorphism if, and
only if, the arrow im Φf → Φ im f is an isomorphism.

Proof. We have that im Φf is the kernel of coker Φf and that Φ im f is the kernel of
coker Φm. The statement follows by the uniqueness (up to isomorphism) of kernels
and cokernels.

Let e : A→ im f be the canonical epi. We then have:

Proposition 8.4.12. The arrow Φe is epi if, and only if, coker Φf → coker Φm is
iso.

Proof. The statement easily follows by the uniqueness of the epi-mono factorization.

As a sufficient condition, consider the exact sequence:

A
f−→ A′ → A′′ → 0

and derive an exact sequence:

0→ ker f → A→ im f → 0.

Applying the veil on the sequence yields the complex:

0→ Φ ker f → ΦA→ Φ im f → 0

The sequence is exact if R1Φ(ker f) = 0. This occurs if ker f is a projective object.
In case our category System is a R-Mod with R a principal ideal domain, then: if
A is a free module, then coker Φf → coker Φm is iso. Indeed, we have that every
submodule of a free module is free. Such a situation will occurs (implicitly) later on
when we discuss Tor functors and memory in linear time-invariant systems.

Mayer-Vietoris sequence for generative effects.

Consider the pushout-pullback square:

B D

A C
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We can then construct an exact sequence:

0→ A→ B ⊕ C → D → 0

and recover the following long exact sequence:

0→ Φ(A)
f−→ Φ(B)⊕Φ(C)→ Φ(D)→ R1Φ(A)

g−→ R1Φ(B)⊕R1Φ(C)→ R1Φ(D)→ · · ·

We may then deduce the short exact sequence:

0→ coker(f)→ Φ(D)→ ker(g)→ 0

If, for instance, Phenome is the category of k-vector spaces, then the sequence
further splits and we can recover:

Φ(D) = coker(f)⊕ ker(g),

thus directly relating the phenome of the interconnected system to that of its sepa-
rate systems. The component coker(f) is explained by the phenome of the separate
systems, while the component ker(f) encodes the effects produced by generativity.
The higher-order objects RiΦ can, of course, be characterized by similar means.

8.5 Sources of abelian veils.

Abelian categories and their additive veils abound. We present, in this section, some
sources, examples and applications of such veils.

8.5.1 Modules, Tor and Ext.

A prime example of an abelian category is the category R-Mod of modules over a
ring R. We assume all rings in this section to be commutative with unit. Let P and
S be two rings. We let System and Phenome be S-Mod and P -Mod respectively.
In general, for every P -S-bimodule A we have the adjunction:

homP -Mod(M ⊗P A,N) = homS-Mod(M, homS(A,N))

Conversely, we have:

Proposition 8.5.1 (Eilenberg-Watts). Every veil Φ : S-Mod→ P -Mod is naturally
isomorphic to homP (A,−) for some P -S-bimodule A.

Proof. We refer the reader to [Eil60] or [Wat60] for a proof.

Proposition 8.5.2 (Eilenberg-Watts). Every co-veil Φ : S-Mod→ P -Mod is nat-
urally isomorphic to −⊗S A for some P -S-bimodule A.

Proof. We refer the reader to [Eil60] or [Wat60] for a proof.
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Every small abelian category (via the Freyd-Mitchell embedding) admits an fully-
faithful exact embedding into a category of modules for some ring R. When restricting
our class of systems to a set, the abelian subcategory it generates will be small and
can be embedded into an R-Mod category for some R. As such, veils and coveils that
are preserved when restricted to the smaller category of systems, may be expected to
behaved as either hom-ing or tensor-ing.

A further source of veils and coveils arise from a ring homomorphism:

f : P −→ S

The ring map f induces a restriction of scalar functor:

F : P -Mod←− S-Mod

We then have:

Proposition 8.5.3. The functor F admits − ⊗P S : P -Mod −→ S-Mod as a left
adjoint and homP (S,−) : P -Mod −→ S-Mod as a right adjoint.

Proof. It is enough to note that F is naturally isomorphic to homS(S,−) and −⊗S S
when S is viewed as a P -S-bimodule. The proof is further expounded below.

The functor F is necessarily exact then. To clear up any confusion, with the usual
adjunction described at the beginning of the section, one needs to be careful in which
category tensor-ing and hom-ing are performed. First, the rings S admits a P -S-
bimodule structure. It is trivially an S-module, and gains the P -module structure
through f . Now, the right adjoint of − ⊗P S is homS(S,−) taken over S-Mod.
Dually, the left-adjoint of homP (−, S) is − ⊗S S taken over S-Mod. Notice that
homS(S,A) = A ⊗S S = A. And when A is regarded as a P -module, it becomes
isomorphic F (A).

More intricate abelian categories (or at least R-Mod with complicated rings R)
might be needed to achieve higher expressivity in systems. Another natural source
of abelian categories is that of sheaves, but development along those lines will not
be pursued in this chapter. Functor categories of abelian objects are abelian, and
further aid us in declaring distinguished subobjects in our systems.

The category R-Mod is known to have enough projectives and injectives. The de-
rived functors of hom(A,−) and −⊗A are known as Tor and Ext, respectively. Those
functors are studied extensively. Although our veils and coveils on R-Mod categories
seem to be generic, the modules themselves, both in System and in Phenome, may
admit various systems-theoretic interpretations. We next study one interpretation of
R-mod for simple rings, and the proceed to briefly discuss functor categories.

8.5.2 Tor functors and memory in LTI systems.

Recall that a Willems’ system is a pair (U,B) of sets where the set U, termed the
universum, denotes the set of all possible outcomes or trajectories, and the set B ⊆ U
denotes the set of trajectories allowed by the dynamics or the restrictions of the
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system. Given two systems (U,B) and (U,B′) with the same universum, their inter-
connection yields the system (U,B ∩ B′) whose behavior keeps only the trajectories
allowed by both separate behaviors.

Universa and behaviors can be equipped with various mathematical structures.
Let us fix a field k. Let k[[z−1]] be the ring of formal power series in the variable
z−1 with coefficients in k. We use z−1 instead of z as it is commonly used in signals,
systems and control. An element

∑∞
i=0 aiz

−i of k[[z−1]] is to be regarded as a discrete-
time signal taking value ai at time i. A linear time-invariant (LTI) system can be
regarded as pair (U,B) where U is the n-dimensional free module k[[z−1]]n and B
is a submodule of U. Indeed, the sum of two signals in B is again in B, and the
signal z−1s, the time-shifted version of s ∈ B, is also in B. As k[[z−1]] is a principal
ideal domain and U is a free module, then every behavior B ⊆ U is necessarily a free
submodule.

We are interested in understanding the role that memory plays when two LTI
systems interact. One way to understand this role is by destroying a systems’ capac-
ity for memory, and derive a memoryless system from the original one. Given two
systems, we then compare the memoryless system derived from the interconnection
of the two, to the interconnection of the memoryless systems derived from the sepa-
rate systems. If those are not isomorphic, then we can say that memory plays a role.
Memory will play a role whenever destruction of a system’s capacity for memory does
not commute with interconnection. We refer the reader to [Ada17e], for the details
and the intuition.

In fact, we may derive the memoryless system from (U,B) by keeping the vector
space Bmem := {a ∈ k : a + z−1s ∈ B}. We keep only the values taken by signals at
time step 0. We define:

π : k[[z−1]]→ k[[z−1]]/z−1k[[z−1]]

to be the canonical projection. We then have Bmem := {π(s) : s ∈ B}. The ring
map π induces a restriction of scalar functor, which admits Φ(−) := − ⊗k[[z−1]]

k[[z−1]]/z−1k[[z−1]] as a left adjoint. We then get:

Φ(U/B) = kn/Bmem

The functor Φ is a coveil that forgets a system’s capacity for memory. It is right exact
and admits left derived functors.

Proposition 8.5.4. The nth left derived functor of Φ is hom(k[[z−1]]/z−1k[[z−1]],−)
for n = 1 and 0 for n > 1.

Proof. For notational convenience, let R denote k[[z−1]] in this proof. Let M be an
R-module. Consider the projective resolution of R/z−1R:

0→ R
z−1

−−→ R→ R/z−1R→ 0
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Then L∗Φ(M) is the the homology of the complex:

0→ R⊗M z−1

−−→ R⊗M → 0.

We then get Φ(M) = M/z−1M = M ⊗ R/z−1R, L1Φ(M) = {m : z−1m = 0} =
hom(R/z−1R,M) and LnΦ(M) = 0 for n > 1.

From a pushout-pullback square:

U/B U/B + B′

U/B ∩ B′ U/B′

we recover an exact sequence:

0 U/B ∩ B′ U/B ⊕ U/B′ U/B + B′ 0 .

Applying Φ generally incurs a loss of exactness on the left, and we thus recover a
six-term exact sequence:

0 L1Φ(U/B ∩ B′) L1Φ(U/B)⊕ L1Φ(U/B′) L1Φ(U/B + B′) · · ·

· · · kn/(B ∩ B′)mem kn/Bmem ⊕ kn/B′mem kn/(B + B′)mem 0

The vector space L1Φ(U/B) encodes the signals s ∈ U such that s /∈ B but z−1s ∈ B.
It is characterizing the trajectories that only appear in delayed (shifted) form in B,
thus capturing the role of memory.

8.5.3 On abelian arrow categories.

Abelian arrow categories can be very simple, but provide just enough expressivity to
start understanding interesting systems-theoretic situations.

Notation 8.5.5. We denote the category • → • by 2.

Let A be an abelian category, then the arrow category A2 is abelian. Furthermore:

Proposition 8.5.6. Let I be a small category. If A is abelian, complete (resp.
cocomplete) and has enough injectives (resp. projectives), then the functor category
AI has enough injectives (resp. projectives).

Proof. See for instance [Wei95] Example 2.3.13 (and Exercise 2.3.8) for a proof.

Specifically, the arrow category A2 has enough injectives whenever A is complete
and has enough injectives. Every arrow in an abelian category admits a kernel and a
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cokernel. Abelian arrow categories then naturally provide us with veils and coveils.
In particular:

Proposition 8.5.7. If A is an abelian category, then:

A2 A2

coker

ker

the functor ker is right adjoint to coker.

Proof. As every mono is a kernel of some map, it would be enough to show that the
comma category (g ↓ ker) whose objects are diagrams g → m:

• •

• •

α

g m

β

with m monic, and morphisms are the corresponding commutative triangles, has
g → im g as an initial object. Indeed, im g = ker coker g. We show that through the
following commutative diagrams, using successive epi-mono factorizations:

• imα •

im g im βµ

• •

g m

µ

'

β

The composition of two epis (resp. mono) is an epi (resp. mono). Epi-mono fac-
torizations are unique, thus inducing the isomorphism im βµ → imα. We have thus
created an arrow im g → imα. Every diagram g → m, then factors through the
diagram g → im g, making it an initial object in the category (g ↓ ker). The functor
coker is then a left adjoint of ker.

Both the ker and coker functors, in the setting, are seen to take a linear map in
A2 and produce another linear map in A2. We can also regard ker as a functor from
A2 to A. We first note that in general:

Proposition 8.5.8. For every category C, we have an adjunction:

C C2
diag:c 7→idc

dom

where dom is right adjoint to diag. The functor dom keeps the domain of the arrow,
and the functor diag sends c to the identity arrow on c.

Proof. Every arrow A→ B in A factors through A
∼−→ dom diagA.
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As we can compose adjunctions to get adjunctions, regarding ker as a functor
from A2 to A, we get:

Corollary 8.5.9. If A is an abelian category, then:

A A2

−→0

ker

the ker : A2 → A functor is a right adjoint to the functor sending A in A to the
unique arrow A→ 0 in A2.

Proof. The functor dom ker is a right adjoint to coker diag.

The ker functor is then a veil from A2 to A, and whenever A is complete and
admits enough injectives it admits right derived functors:

Proposition 8.5.10. Suppose A is complete and has enough injectives. The first
right derived functor R1 ker of ker : A2 → A is coker. The nth right derived functors
of ker are trivial (0) for n > 1.

Proof. The fact that ker and coker form a δ-functor follows from one direct application
of the Snake lemma. Indeed, a short exact sequence in A2 is a commutative ladder of
two rows and five columns. We then need to show that ker and coker form a universal
δ-functor. It would be enough to prove that the coker functor is effaceable, see e.g.,
[Gro57] Proposition 2.2.1. An additive functor F : A → B is said to be effaceable if
for every object A of A there is a monomorphism u : A→ I such that F (u) = 0. To
this end, let f : A→ B be an object of A2. As A has enough injectives, let i : A→ I
and j : B → J be monomorphisms into injective objects. We then construct the
diagram:

A I ⊕ J

B J

f

(i,jf)

(0,id)

j

The diagram is clearly a monomorphism in A2, and coker(I ⊕ J → J) = 0.

The coker functor is dually a coveil from A2 to A. Dual statements can then be
recreated accordingly.

Let us develop an interpretation and a use for this (co)veil and its derived functors.
We will also return to that veil in the last section on veil-lifts.

8.5.4 Understanding the behavior of subsystems.

Let us recall the instance of (co)generative effects mentioned in Subsection 8.2.2. Let
(U,B) be a Willems’ system. We are interested in understanding the behavior of a
subsystem of (U,B) as the greater system undergoes some change. Mathematically,
we are given a projection, a surjective set-map π : U → S. The subsystem of (U,B)
is then (S, πB). Given two systems (U,B) and (U,B′) with the same universum,
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their interconnection yields the system (U,B ∩ B′) whose behavior keeps only the
trajectories allowed by both separate behaviors. A change in (U,B) is then regarded
as a system (U, C), and incurring the change consists of constructing the system
(U,B ∩ C). The projection π sets up a coveil from (2U,⊆) to (2S,⊆). Cogenerative
effects are sustained by the coveil as:

π(B ∩ C) 6= π(B) ∩ π(C)

for some B and C. Our goal is to characterize this inequality, and mend this loss of
exactness.

We restricts ourselves to an abelian setting. Let us fix k to be a field. We suppose
that our universa are vector spaces over k, and the behaviors are subspaces. As the
set intersection of subspaces is a subspace, the setup described extends unchanged to
the case of k-vector spaces. We define kk-Vect to be the category of k-vector spaces
with linear maps. Let S be a vector space. We define System to be kk-Vect/S, the
slice category whose objects are linear maps:

s : V −→ S

and morphisms are commutative triangles:

U U ′

S

f

s s′

Given a Willems system (U,B) and a map (non-necessarily surjective) π : U→ S, we
represent the system as the composition:

B ↪→ U π−→ S

Notice that the cokernel of such a map (seen as an object in kk-Vect2) is S/π(B).
We have thus encoded the behavior of the subsystem in the cokernel of the map. If
we embed our systems, via ι : kk-Vect/S → kk-Vect2, in kk-Vect2 we would have
more generally set up a coveil:

coker : kk-Vect2 → kk-Vect
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A pushout-pullback square in (kk-Vect ↓ S) such as:

B B + B′

S

B ∩ B′ B′

s′

s+

s∩

s

where B and B′ are subspaces of U, yields, via by application of ι, an exact sequence
in kk-Vect2, namely a commutative diagram:

0 B ∩ B′ B ⊕ B′ B + B′ 0

0 S S⊕ S S 0

The coveil is coker : kk-Vect2 → kk-Vect, and its derived functors are ker for n = 1
and 0 for n > 1. We thus get a six-term exact sequence:

0 ker s∩ ker s⊕ ker s′ ker s+ S/π(B ∩ B′) S/πB ⊕ S/πB′ S/π(B + B′) 0

The derived functor ker encodes the behavior outside the subsystem, if that subsystem
was forced to take the value of zero. It is encoding how decoupled is the rest of the
system from the subsystem.

The algebraic structure of the universa and the behavior can be further compli-
cated. We refer the reader to [Ada17f] for a thorougher development of this problem
and its solution.

The category kk-Vect/S is not abelian. We implicitly lifted our comma category
via ι to the abelian category kk-Vect2. Such lifts will be developed and discussed in
the next section.

Remark. The approach expounded allows us to interconnect systems living in dif-
ferent universa. Interconnecting systems in different universa can be performed by
first generalizing the notion of a system as discussed in section 8.3.1, and then taking
pullbacks in the appropriate (arrow) category. Such a capability will however not be
explicitly discussed.

8.6 Abelian lifts of non-abelian veils.

An initial formulation of a situation of generative effects may force us to define cat-
egories which are non-necessarily abelian. In such settings, homological ideas do not
apply directly. Although there are various ways to recover such ideas, we discuss
means to lift our situation to ones that are abelian in nature.

247



8.6.1 Abelian lifts.

To lift our situation into an abelian setting, and have the lift be useful, we need
at least three components. First, the interconnection of systems (and of phenomes)
should be preserved in the lifted setting. Second, we should be able to recover, in the
lifted setting, the information we need. Third, we need to encode generativity, the
cause of generative effects, in the lifted setting.

Definition 8.6.1. Let (P ,Φ) be a veil on S. A veil-lift of Φ is a commutative diagram
of functors:

PL
ΦL←−−−−−−−−− SL

Lp

x Ls

x
P

Φ←−−−−−−−−− S

such that:

• The functor ΦL is a veil.

• The functors Ls and Lp are faithful, conservative and preserve finite connected
colimits.

The veil-lift is said to be abelian whenever both PL and SL are abelian categories.

In case a veil-lift is abelian and the category SL admits enough injectives, the
right derived functors of ΦL then exist. Under appropriate conditions, the derived
functors will be seen to encode the loss of exactness in the lifted veil Φ.

We will abuse language and refer to ΦL as the (veil-)lift of Φ, whenever Ls and Lp
are clear from the context. The functors Ls and Lp will be referred to as the liftings.
Veil-lifts can of course be vertically composed, by composing the liftings. Veil-lifts
can also be composed horizontally by composing the veils, whenever the appropriate
liftings match.

The definition provided should be viewed as a pattern. It could be weakened
or strengthened as desired to suit particular needs. We will not be concerned with
providing a right definition, as we will only be using it tangentially in this chapter.
We will nevertheless show that one can always find such a lift, for every setting. The
generality of the lift we construct may however limit its uses. Some remarks:

• The functor ΦL is considered to be a veil. We may weaken the requirement to
only have it be left-exact. This weakening would be enough for our purpose to
get derived functors, if the respective categories admit enough injective objects.

• The properties of a functor being conservative and being faithful are not fully
independent. We refer the reader to [AGV72] Exposé i, Section 6 for a treatment
of some connections. The chapter will not pursue investigations along that line.
We note however that any fully-faithful functor is conservative.

• One may further need to enhance an (iso) conservative functor to be conservative
on (regular) monomorphisms, or (regular) epimorphisms, etc.
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• A connected colimits is only a colimit over a connected category. Connected
colimits then do not include coproducts. In an abelian setting, coproducts
amount to putting the systems together, without making them interact. Such
an intuition is not present in other categories, mainly preorders. When lifting,
we intentionally want to override the intuition of coproduct in the base category,
if needed, to replace it with one that can be consistent with putting the systems
together, but separately. For more information on connected (co)limits we refer
the reader to [Par90].

The characteristics of the veil-lift ΦL are such that it preserves a lifted connected
colimits if, and only if, it is initially preserved by the veil. Let (P ,Φ) be a veil on S,
and let:

PL
ΦL←−−−−−−−−− SL

Lp

x Ls

x
P

Φ←−−−−−−−−− S

be a veil-lift.

Proposition 8.6.2. For every blueprint (J , B) where J is connected, the map lim−→ΦB →
Φ lim−→B is an isomorphism if, and only if, the map lim−→ΦLLsB → ΦL lim−→LsB is iso-
morphism.

Proof. As Lp is conservative, we have lim−→ΦB ' Φ lim−→B if, and only if, Lp lim−→ΦB '
LpΦ lim−→B. We have Lp lim−→ΦB ' lim−→LpΦB as Lp commutes with connected limits,
and thus Lp lim−→ΦB ' lim−→ΦLsB as the diagram commutes. On another end, we have
LpΦ lim−→B ' ΦLLs lim−→B by commutativity of the diagram.

A similar diagram as in Proposition 8.3.8 can be recreated in appropriate settings.
However, how inexactness is preserved and encoded in the lifted-veil can be a delicate
matter. For instance, if the liftings also preserve connected limits, then we can expect
that the inexactness is fully encoded in the lifted-veil. In the case where the lifted
category of systems has enough projective, its derived functors ought to encode the
potential for the loss in the base space. On another end, if connected limits are
not preserved, then the lift completes the categories of systems and/or phenome by
adding new objects. We may thus obtain a finer notion of a common system. This
refinement may encode part of the inexactness.

For instance, consider the following pushout-pullback square in S:

C A

B P

,

where the diagram:

ΦC ΦA

ΦB ΦP

,
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is not a pushout square (and thus only a pullback square as Φ is a veil). The veil
Φ has sustained generative effects for such a blueprint A ← C → B. Let ΦL be an
abelian veil-lift with lifting LS. If the lifting LS does not preserve pullbacks, then the
lifted square in SL factors through another pushout-pullback square:

LsC

K LsA

LsB LsP

.

If the object of the pullback is projective, which can be the case, then the sequence:

0→ ΦLK → ΦLLsA⊕ ΦLLsB → ΦLLsP → 0

will be exact. Generative effects cannot be thought to be evidently sustained by the
lifted-veil in such a particular instance. For a concrete instance of such a case, the
reader is refered to the end of Subsection 8.6.4. We will discuss the situation more
in the following section. But first we develop a simple example to show how lifts can
work.

Do we need to project down? The faithful and conservative condition means
that we are not losing information when lifting. Whether we would need to project
down to the base space, to interpret the situation, will depend on the particular
situation itself. It is often the case that the space of phenomes is simple, and thus its
lift admits a simple interpretation. For instance, the phenomes that are made of finite
sets can be encoded in the dimensions of a vector space. The interpretation of the
lifted phenome, and the higher (co)homology objects, then lie in the dimension and
can be expected to be easily derived. There is no need then to formally project down
to obtain an interpretation of the lifted phenome and higher (co)homology objects.

8.6.2 A situation of contagion.

Let S be a set {a, b, c}. Given an undirected graph over S, we are interested in
whether or not there is an undirected path from a to c. Neither of the following
graphs G or G′ contains a path from a to c.

G : a b c G′ : a b c

But if G and G′ are combined together, by taking the union of their edge set, to yield:

G ∪G′ : a b c
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the edges synchronize and a path emerges. This example can be interpreted as a
simplified instance of contagion. A node may be either healthy or infected. Any
healthy node connected to a neighboring infected node can become infected. Once a
node is infected, it remains infected forever. The existence of a path then determines
whether or not a node c becomes infected if a is infected. Such models are more
generally studied in [Ada17c] and [Ada17b]. Of course, the set S in this example can
be of arbitrary finite cardinality.

This example is one that will be shown to exhibit generative effects. Most im-
portantly, the natural formulation of the situation is by nature not an abelian for-
mulation. We will then define an appropriate abelian veil-lift, and characterize the
generativity of the situation.

Functorial formulation.

We begin by defining our categories of systems and phenomes, and the veil relat-
ing them. Our systems will be undirected graphs with two distinguished vertices.
Our phenome is whether or not an undirected graph contains a path connecting the
distinguished vertices.

An undirected graph (V,E) over a vertex set V with edge set E is a reflexive and
symmetric relation E ⊆ V × V . If G := (V,E) and G′ := (V ′, E ′) are undirected
graphs, then a graph homomorphism h : G → G′ is a set map V → V ′ such that
if (u, v) ∈ E, then (hu, hv) ∈ E ′. Let Graph be the category of finite undirected
graphs and graph homomorphisms. Let ∗∗ be the graph on two vertices with no edge
in between.

Definition 8.6.3. We define System to be the comma category (∗∗ ↓ Graph) whose
objects are graph homomorphisms s : ∗∗ → G and morphisms are commutative trian-
gles:

∗∗

G G′

s s′

h

The morphism ∗∗ → G declares which are the distinguished vertices in G. The
distinguished vertices need not be distinct.

Definition 8.6.4. We define Phenome to be the category 2, namely 0→ 1 with two
objects.

Definition 8.6.5. We define a functor F : System → Phenome that sends s to 1
if the distinguished vertices lie in the same connected components, and to 0 otherwise.

The functor F is well defined. Indeed, let s → s′ is a morphism of systems. If
F (s) = 1, then there exists a path connecting the distinguished nodes. The path is
then mapped to another path (via the graph homomorphism) connecting the image
of the two distinguished terminals in s′. We then get F (s′) = 1.
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Recovering the veil.

The functor F is not a veil. As we shall see, we can however recover a veil by factoring
F appropriately. To this end, we define Tran-System to be the full subcategory of
System whose objects are arrows ∗∗ → G where the edge-set of G is additionally a
transitive relation (becoming an equivalence relation). The graphs in Tran-System
are then disjoint union of cliques. Their connected components are complete graphs.
The category Tran-System is a coreflective subcategory of System, i.e. the inclusion
functor i : Tran-System → System admits a right adjoint functor T : System →
Tran-System.

Proposition 8.6.6. The functor F factors through a veil:

i. There exists a unique functor Φ making the diagram:

Tran-System

System Phenome

Φ
T

F

commute.

ii. The functor Φ is a veil.

iii. The veil Φ sustains generative effects.

Proof. (i.) The functor Φ is the restriction of F on Tran-System, and indeed F (G) =
Φ(TG) as T does not create new connected components. (ii.) The functor Φ admits
a left adjoint sending 0 to the graph ∗ ∗ and 1 to the graph ∗ − ∗. (iii.) Recall the
example at the beginning of the subsection.

The intuition of generative effects then emerges from the veil Φ. The categories
System, Tran-System and Phenome are however not abelian. We will define an
abelian veil-lift suited for the situation.

The abelian lift.

Let free be the free functor from the category of sets to the category of abelian groups.

Notation 8.6.7. We denote by Ab-grp and Set the category of abelian groups and
sets, respectively.

If S is a set, freeS is the free abelian group generated by the elements of S.
The functor free lifts to a free functor free : Ab-grp2 → Set2 between the arrow
categories.

Given a graph G(V,E), we define IG ⊆ free(V ) to be the subgroup 〈i− j : (i, j) ∈
E〉.

Definition 8.6.8. We define L : System→ Ab-grp2 to be the functor that sends:
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i. a system s : ∗∗ → G(V,E) to Ls : free(∗∗)→ free(V )→ free(V )/IG.

ii. a morphism s→ s′:
∗∗

G G′

s s′

h

to a commutative diagram:

free(∗∗) id−−−→ free(∗∗)yLs yLs′
free(V )/IG

Lh−−−→ free(V ′)/IG′

where Lh is the canonical induced map.

The map Lh is always well defined. Indeed, the map h is a graph homomorphism
and thus if i − j ∈ IG, then hi − hj ∈ I ′G. We then have h(IG) ⊆ IG′ and so
free(V )→ free(V ′)/IG′ factors through free(V )/IG.

Theorem 8.6.9. The functor L induces an abelian veil-lift:

i. The following diagram commutes:

Ab-grp Ab-grp2

Phenome Tran-System System

ker

free LTran

Φ

L

F

ii. The functor LTran is faithful, conservative and preserves connected colimits.

iii. The functor ker is additive and admits a left-adjoint.

Proof. (i.) The functor L factors through F . (ii.) The functor LTran is the restric-
tion of L onto Tran-System. The functor L is faithful, conservative and preserves
connected colimits. The restriction of L is then also faithful and preserves connected
colimits. It is also conservative as Tran-System is a full subcategory of System.
(iii.) We have shown in Corollary 8.5.9 that the kernel functor is left-exact, and
admits a left adjoint sending K in Ab-grp to K → 0 in Ab-grp2.

Proposition 8.6.10. For every system s, we have:

ker(Ls) =

{
Z if a path exists.
0 otherwise.
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Proof. The statement follows by construction.

The phenome is appropriately encoded in the lift, and the loss of exactness due to
the veil is encoded in the loss of exactness due to the veil-lift. The fact that pullbacks
are not always preserved by the liftings does not affect much our situation.

The veil Φ admits the category Tran-System of clique graphs as domain. We
can however study Φ just by studying F directly. The system in System may be
viewed as a syntactical representation of the underlying system that matters. Two
different syntactical representations may yield the same system for all our purposes
here. Regardless, the functor F preserves colimits, and does not cause any nuisance
when it comes to understand the loss of exactness of Φ through it.

The category Ab-grp2 admits enough injectives, and thus ker admits right derived
functors.

Proposition 8.6.11. We have R1 ker = coker and Rn ker = 0 for n > 1.

Proof. Follows from Proposition 8.5.10.

The first cohomology group can be interpreted as keeping the induced subgraph
on the nodes (along with all the edges in between) not connected to any of the
distinguished vertices. Explicitly, consider a system s : ∗∗ → G. Its lift is the linear
map Ls : free(∗∗)→ free(V )/IG. Let ι : free(∗∗)→ free(V ) be the canonical inclusion
induced by s. The cokernel of Ls is:

free(V )/
(
IG + ι(free(∗∗))

)
Let W ⊆ V be the set of vertices that are not connected via a path in G to any node
in s(∗∗). We then finally get:

free(V )/
(
IG + ι(free(∗∗))

)
= free(W )/J

where J = 〈i− j : i, j ∈ W and i− j ∈ IG〉.

Computing the cohomology objects.

As a further development, consider the following pushout square:

sc s

s′ sp
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The lifted square in SL factors through a pushout-pullback square:

Lsc

K Ls

Ls′ Lsp

.

Note that Lsc and K may be isomorphic, as the lifted square may already be a
pullback square. The square translates into an exact sequence:

0→ K → Ls⊕ Ls′ → Lsp → 0

For ease of notation, let us denote ker by ΦL and R1 ker by H1. We then obtain a six
term exact sequence:

0→ ΦL(K)→ ΦL(Ls)⊕ΦL(Ls′)→ ΦL(Lsp)→ H1(K)→ H1(Ls)⊕H1(Ls′)→ H1(Lsp)→ 0

We may then deduce ΦL(Ls′) from the remaining constituents of the exact sequence.

Proposition 8.6.12. We have:

Φ(Lsp) = coker
(

ΦL(K)→ ΦL(Ls)⊕ΦL(Ls′)
)
⊕ ker

(
H1(K)→ H1(Ls)⊕H1(Ls′)

)
Proof. We have that ΦL(Lsp) is either Z or 0. The short exact sequence centered at
ΦL(Lsp) derived from the six-term sequence in cohomology then splits.

Let us reconsider the example in the introductory paragraph of this section. Let
G and G′ be the following two graphs:

G : a b c G′ : a′ b′ c′

They induce systems s and s′, and the system sc onto which they are glued corresponds
to the graph:

G ∩G′ : ac bc cc

The two distinguished vertices in ∗∗ are mapped to a, a′, ac and c, c′, cc, separately.

Proposition 8.6.13. We get a six-term exact sequence:

0→ 0→ 0⊕ 0→ ΦL(Lsp)→ Z→ 0⊕ 0→ H1(Lsp)→ 0.

Then ΦL(Lsp) = Z, and H1(Lsp) = 0. It follows that the graph G ∪ G′ admits
a path from a to c as H1(G ∩ G′) is Z, namely because bc in G ∩ G′ is connected to
neither ac nor cc.
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8.6.3 All veils admit an abelian veil-lift.

We establish in this section that every veil admits an abelian veil-lift. To avoid
foundational issues, we will require the base category of system (often denoted by S)
to be a small category. This should not be seen as a detrimental restriction, as from
an engineering outlook, we can restrict our attention to a particular set of systems.

The generality of the construction however limits the immediate use of the con-
structed abelian veil-lift. In particular, the adequacy of a lift relates to how the
inexactness of the veil is encoded in the veil-lift. We discuss some issues pertaining
to that remark at the end of Subsection 8.6.4.

We will work in this section with coveils rather than veils. As we will be using
the Yoneda embedding in its contravariant form, working with co-veils saves us from
multiple dualizations to opposite category. The abelian veil-lift for veils can then be
directly deduced by duality.

The implications and requirements of co-generative effects are as follows. Co-
interconnections are limits, and co-veils admit right adjoint functors. In the abelian
case, the term epimorphism is replace by monomorphism. Thus co-generative ef-
fects occur whenever monos are not sent to monos by the coveil. All else remains
unchanged. Dually, we define:

Definition 8.6.14. Let (P ,Φ) be a coveil on S. A coveil-lift of Φ is a commutative
diagram of functors:

SL
ΦL−−−−−−−−−→ PL

Ls

x Lp

x
S

Φ−−−−−−−−−→ P

such that:

• The functor ΦL is a coveil.

• The functors Ls and Lp are faithful, conservative and preserve finite connected
limits.

The coveil-lift is said to be abelian whenever both PL and SL are abelian categories.

As mentioned, to avoid foundational issues, we consider our category S of systems
to be small. Such a fact restrict limits taken from diagram whose index category is S
to be small limits. Such a limit is used, for example, in the proof of [AGV72] Exposé
i Proposition 5.1 that we evoke in the proof to follow.

Proposition 8.6.15. If P and S are additive categories, then the Yoneda embedding
A 7→ hom(−, A) induces an abelian coveil-lift:

Ab-grpSop Φ̂−−−−−−−−−→ Ab-grpP op

hS :s 7→hom(−,s)
x xhP :p7→hom(−,p)

S
Φ−−−−−−−−−→ P
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Proof. As S and P are abelian, then hS and hP land in the category of presheaves
of abelian groups. The (enriched) Yoneda embedding preserve all limits, including
connected limits. As it is fully-faithful (by the Yoneda lemma), it is also conservative.
The functors hS and hP are then liftings.

Given Φ : S → P , let us define the functor:

Φ∗ : Ab-grpP op → Ab-grpSop

sending an object F in Ab-grpP op

to F ◦ Φ in Ab-grpSop

. By [AGV72] Exposé i
Proposition 5.1, the functor Φ∗ admits a left-adjoint Φ!, i.e. a coveil. It remains to
show that the diagram:

Ab-grpSop Φ!−−−→ Ab-grpP op

hS :s 7→hom(−,s)
x xhP :p 7→hom(−,p)

S
Φ−−−→ P

commutes. To this end, for every object F in Ab-grpP op

, we have natural isomor-
phisms hom(hSΦ(s), F ) = FΦ(s) and hom(Φ!hS(s), F ) = hom(hS(s),Φ∗F ) = FΦ(s).
Indeed, the proof of a typical yoneda lemma into presheafs of sets follows through
unchanged. We also refer to [Kel36] Section 2.4 for a much more general statement.
As h 7→ hom(h,−) is fully-faithful (again a (covariant) yoneda embedding) and thus
conservative, the natural isomophism hom(hSΦ(s),−)

∼−→ hom(Φ!hS(s),−) leads to a
natural isomorphism Φ!hS(s)

∼−→ hP Φ(s). The diagram thus commutes.

Furthermore, every coveil can be lifted to an additive coveil. Such a lift can be
achieved through the free additive category generated by C.

For every category C, there is a universal arrow AddC : C → Add(C) from C to
additive categories. For a category C, we first define the category Z(C) whose objects
are those of C, and its hom-set homZ(C)(a, b) is the free abelian group generated by
the hom-set homC(a, b). The objects of Add(C) are n-tuples of objects of Z(C),
and the arrows of Add(C) are matrices of arrows of Z(C). For more details on the
construction, we refer the reader to [ML98] Ch VIII, Ex 5-6.

Proposition 8.6.16. The functor AddC : C → Add(C) is a faithful, conservative
and preserves finite connected limits.

Proof. Those properties follow by construction.

Notice that if C is a small category, then Add(C) is a small category.

Proposition 8.6.17. The functors AddC : C → Add(C) induce a coveil-lift:

Add(S)
Add(Φ)−−−−−−−−−→ Add(P )

AddS

x AddP

x
S

Φ−−−−−−−−−→ P
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Proof. The functors AddC are universal. The functor AddP Φ then factors through
AddS, yielding the functor Add(Φ). The functor Add(Φ) can be described as sending
an object ⊕iSi to ⊕Φ(Si) and the corresponding matrices of morphisms fij to matrices
of Φ(fij). Let U be the right adjoint of Φ, then every arrow ⊕jΦ(Sj) → ⊕iPi in
Add(P ) factors through the (canonical) universal arrow ⊕iΦF (Pi) → ⊕iPi. The
functor Add(Φ) then admits a right adjoint, and is thus a coveil.

Similarly, if F is the right adjoint of Φ, then AddS ◦F factors through AddP to
yield the right-adjoint of Add(Φ). The hom-set equivalence follows directly as:

hom(Add(Φ)⊕i Si,⊕jPj) = hom(⊕iΦSi,⊕jPj)
= ⊕i,j hom(ΦSi, Pj)

= ⊕i,j hom(Si, FPj)

= hom(⊕iΦSi,⊕jFPj) = hom(⊕iSi,Add(F )⊕j Pj)

Naturality in this case would also follow from the naturality of the hom equivalence
connecting Φ and F . Combining the two coveil lifts, we get:

Theorem 8.6.18. For every veil Φ, we have an abelian coveil-lift:

Ab-grpAdd(S)op
ˆAdd(Φ)−−−−−−−−−→ Ab-grpAdd(P )op

hS AddS

x hP AddP

x
S

Φ−−−−−−−−−→ P

Proof. Combine Propositions 8.6.15 and 8.6.17.

Proposition 8.6.19. The category Ab-grpAdd(S)op has enough projectives.

Proof. Since S is small, Add(S)op is small. As Ab-grp is cocomplete and has enough
projectives, the statement then follows by Proposition 8.5.6.

The coveil-lift then admits left derived functors. The generality of the
coveil-lift however may limit its usefulness. We discuss some limitations in the next
subsection.

We did not use, throughout this subsection, the property that Φ is a
(co)veil. On one end, this tells us that every functor can be lifted to a (co)veil. Such
a lift can be immediately done into the category of presheaves over sets. On another
end, we can make use of the property by defining adequate Grothendieck topologies
on the categories. This leads us to sheaves rather than presheaves. We might lose
having enough projectives by doing so, but we can recover it by restricting to a small
subcategory of interest. Regardless, this approach will not be further pursued in this
chapter. Also, the category of sheaves of abelian groups always has enough injectives,
and not projective. Another line of approach thus consists of equipping our base
categories with Grothendieck topologies, and utilizing the covariant (contravariant)
Yoneda embedding in the case of coveil (resp. veil). Limits (resp. colimits) of
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representable functors need not yield representable functors. We would then need to
ensure that sheafification will further lead us to preserve the interconnection.

We know that there always exists an abelian veil-lift. The goal is to find a good
abelian veil-lift. Those will depend on the structure of the situtation. We refer the
reader to [Ada17h] for different situations and examples of abelian veil-lifts.

8.6.4 Abelian lifts for the special level.

If our base categories S and P are restricted to be preorder categories, we acquire a
tighter abelian veil-lift. If SetC denotes the category of presheaves of sets, we define
free : SetC → Ab-grpC to be the free functor where freeF (A) = Z(F (A)) is the free
abelian group generated by the set of sections. The free functor is left-adjoint to the
forgetful functor Ab-grpC → SetC. We then have:

Theorem 8.6.20. Let S and P are preorder. For every coveil Φ, we have an abelian
coveil-lift:

Ab-grpSop ΦAb-grp
!−−−−−−−−−→ Ab-grpP op

freehS

x freehP

x
S

Φ−−−−−−−−−→ P

Proof. The functors hS and hP are liftings as they are fully-faithful, thus conservative
and preserve connected limits. The functor free is faithful and conservative. It also
preserves finite connected limits defined only on the representable functors, as it can
be trivially seen to preserve wide-pullbacks defined only on representable functors.
Indeed, a set of sections in a representable presheaf is either a singleton or an empty
set. Given Φ : S → P , let us define the functor:

Φ∗ : SetP
op → SetS

op

sending an object F in SetP
op

to F ◦ Φ in SetS
op

. The functor Φ∗ can be restricted
to Ab-grpP op

to yield a functor:

Φ∗Ab-grp : Ab-grpP op → Ab-grpSop

By [AGV72] Exposé i Proposition 5.1., the functor Φ∗Ab-grp admits a left-adjoint
ΦAb-grp

! , i.e. a coveil. The functor Φ∗ also admits a left-adjoint Φ! making the
following diagram commute:

SetS
op Φ!−−−−−−−−−→ SetP

op

hS

x hP

x
S

Φ−−−−−−−−−→ P

The original diagram then commutes by using [AGV72] Exposé i Proposition 5.8.3.
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Proposition 8.6.21. The category Ab-grpSop

has enough projectives.

Proof. As S is small and Ab-grp is cocomplete and has enough projectives, the
statement then follows by Proposition 8.5.6.

To gain a better understanding of this abelian veil-lift, we define a functor:

ι : Ab-grpC
op → Ab-grpAdd(C)op

sending a presheaf F to ιF such that:

i. (ιF )(A⊕B) = F (A)⊕ F (B) for all A and B,

ii. (ιF )(f ⊕ g) = F (f)⊕ F (g) for f, g : A→ B and,

iii. (ιF )(mf + ng) = mF (f) + nF (g) for integers m and n.

The functor ι extends the base category C of the presheaf to Add(C). By construction,
the functor ι is fully-faithful, conservative and exact. We then arrive at the following
commutation rules whenever C is a preorder:

Proposition 8.6.22. If C is a preorder, then the following diagram:

SetC
op

Ab-grpC
op

Ab-grpAdd(C)op

C Add(C)

free ι

h

Add

h
L

commutes.

Proof. The functor free ◦h factors through C → Add(C) by universality, and thus L
exists and is unique. Note that Z(homC(a, b)) = homAdd(C)(AddC a,AddC b). Thus
free ◦h sends an object C to the presheaf:

C 7→ hom(−,Add(C)) ◦ Add(−)

The functor L is then the functor sending an object Cadd in Add(C) to the presheaf
with C as a base category:

C 7→ hom(−, Cadd) ◦ Add(−)

The commutativity of the left triangle Lι = h can then be easily checked.
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Some limitations.

The generality of this abelian coveil-lift also has limitations. Some can be illustrated
through the following proposition:

Proposition 8.6.23. For every s ∈ S, the lifted-system free ◦h(s) is projective.

Proof. Let S denote the lifted-system free ◦h(s). A presheaf morphism m : S → G
with domain S is uniquely determined by its component m(s) : S(s) → G(s). Thus
let S → F be a morphism, and suppose G → F is an epic morphism. We have
S(s) = Z, and the map S(s) → F (s) then factors through a map S(s) → G(s) as
S(s) is projective. The map S(s) → G(s) induces a morphism S → G, and S → F
necessarily factors through S → G.

Consider then the example:

Φ : 2{a,b} −→ 2{∗}

where:

Φ(S) =

{
{∗} if S 6= ∅
∅ if S = ∅

The map Φ : (2{a,b},⊆) −→ (2{∗},⊆) is clearly a coveil. The lattice 2{a,b} can be
represented through a Hasse diagram as:

{a, b}

{a} {b}

{}

The map free ◦h sends each of the systems {}, {a}, {b} and {a, b} respectively to:

0

0 0

Z

0

Z 0

Z

0

0 Z

Z

Z

Z Z

Z

Cogenerative effects are sustained as:

Φ({a} ∩ {b}) 6= Φ({a}) ∩ Φ({b})

In the lifted-space, we recover an exact sequence:

0→ free ◦h{} → free ◦h{a} ⊕ free ◦h{b} f−→ free ◦h{a, b}
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Generative effects are sustained as the sequence:

0→ 0→ Z⊕ Z→ Z

is not exact. But if we consider an epi-mono factorization:

free ◦h{a} ⊕ free ◦h{b} im f free ◦h{a, b}

The sequence:

0→ ΦL free ◦h{} → ΦL free ◦h{a} ⊕ ΦL free ◦h{b} → ΦL im f → 0

is exact. As the coveil-lift does not preserved colimits, it gives a refined notion of
a common subsystem. That refinement mends some generative effects. Indeed, the
lifted-system im f is:

0

Z Z

Z

Applying the lifted veil ΦL to im f yields Z⊕ Z.

8.7 Concluding Remarks.

Generative effects enclosing cascading phenomena is loss of exactness. A good amount
of intuition and examples are required to put the notion of generative effects on solid
footing. This has not been done here. We refer the reader to [Ada17a] and [Ada17b]
for the details.

This chapter only presents the basics. Its ideas can be stretched, extended and
modified as needed. The neverending goal is to find good abelian lifts to problem of
concerns. We refer the reader to [Ada17e] and [Ada17f] for some applications, and to
[Ada17h] for more information on abelian veil lifts and further applications.
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Chapter 9

How to make cascade effects
linear?

Abstract

It can be a common (mis)conception that cascading phenomena arise from non-
linearities. The key message expressed throughout the thesis is that they do not.
The mathematical structure underlying cascades is loss of exactness. As such it is
then conceivable to lift our problematic situation to a world that is linear, keeping
the effects intact. In such linear (or abelian) settings, tools from commutative algebra
and homological algebra can be put to good use in understanding the phenomena, no-
tably through defining (co)homology theories. We introduce the notion of an (abelian)
veil-lift to encode the phenomenon (somewhat) intact in an abelian structure. We
develops tools and tricks to abelianize cascading phenomena, and finally show that
every situation admits an abelian veil-lift. The neverending goal is then to find tight
lifts.
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9.1 Introduction

It can be a common perception that cascading phenomena arise from non-linearities,
often taken to be complications of a system. We argued throughout the thesis that
cascading effects, formally captured through generative effects, are independent of
nonlinearities. They arise from a completely different mathematical structure, namely
loss of exactness. It is then conceivable to find cascade-like phenomena in linear
settings. Most importantly, we can linearize or abelianize the phenomena for added
advantage. Homological methods and linear algebraic methods then come into the
picture to characterize the phenomenon.

We refer to reader to [Ada17e] and [Ada17f] for examples on generative effects
in the linear (or abelian) cases. Such examples, for instance, become immediately
nonabelian problems if we remove the vector space (or R-module) consideration, and
make our behaviors be only sets. Regardless, a non-abelian problem in contagion is
provided in [Ada17a] and [Ada17b]. As the phenomenon is independent of whether
the situation is abelian or not, it is then possible to lift the situation to one that
is abelian in nature. Of course, we need the lifts to satisfy some properties. In a
nutshell, we need the lift to encode and preserve the characteristics of the situation
so that the lift gives us an faithful answer to our situation.

The topic of finding lifts is of endless bound. We develop some tricks through
examples. The examples can be further developed into greater theories. This chapter
can be seen to provide an array of examples and setting for lifts as discussed in
[Ada17g].

9.2 Generative effects and abelian lifts.

We begin by a review of generative effects, and then introduce abelian lifts.

9.2.1 Generative effects.

Our space of systems is a join-semilattice (System,≤,∨,⊥). Two systems s and
s′ interact to yield s ∨ s′. The system s is said to be a subsystem of s′ if s ≤ s′.
And finally, the system ⊥, the minimum element of the lattice, is the identity system
s ∨ ⊥ = s.
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The space of systems establishes a theory of interconnection, or interaction. Yet
this theory, by itself, is not enough to produce any interaction-related phenomena.
Those emerge when we decide to forget features from the systems.

A veil is pair (P,Φ) where P is a join-semilattice, termed the space of phenomes,
and φ : System → P is an order-preserving map such that {s : p ≤ φ(s)} has a
(unique) minimum element for every p. The veil is intended to conceal parts of the
system and leave other parts, the phenome, bare and observable.

Definition 9.2.1. Generative effects are said to be sustained by the veil (P, φ) if, and
only if, φ(s ∨ s′) 6= φ(s) ∨ φ(s′) for some s and s′.

Generative effects are sustained whenever the phenomes of the separate systems
fail to explain the phenome of interconnected system. The features that are then
concealed interact so as to produce new observables.

9.2.2 Abelian lifts.

The first step of a lift consists of transforming our systems into abelian objects, in
such a way that interaction is preserved. Let S be a join-semilattice.

Definition 9.2.2. A abelian lifting of S is a functor L : S → Ab into an abelian
category Ab such that:

i. If s ≤ s′ and L(s)→ L(s′) is an isomorphism, then s = s′.

ii. If f := L(s ≤ s ∨ s′) and f ′ := L(s′ ≤ s ∨ s′) then:

L(⊥) −−−→ L(s)⊕ L(s′)
f−f ′−−−→ L(s ∨ s′) −−−→ 0

is an exact sequence.

The exactness condition in (ii.) is equivalent to the pair of conditions: (ii.1) the
map f − f ′ is surjective and (ii.2) every pair (a, a′) ∈ L(s)⊕ L(s′) with f(a) = f(a′)
admits a preimage in L(⊥). A lifting lifts the semilattice into an abelian setting
keeping the construction of systems intact. The criterion (i.) removes the case of
simply using the trivial 0 abelian category of one object, and ensures that we are
indeed encoding the systems without destroying information we need. A lifting by
itself is not enough, more importantly, we would need to lift our veil to an abelian
setting:

Definition 9.2.3. Let S be the join semilattice of systems, and let (P ,Φ) be a veil
on S. An abelian veil-lift of Φ is a commutative diagram of functors:

PL
ΦL←−−−−−−−−− SL

Lp

x Ls

x
P

Φ←−−−−−−−−− S

such that:
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• The categories PL and SL are abelian.

• The functor ΦL is left-exact (and thus also additive).

• The functors Ls and Lp are liftings.

The lifting and the veil-lift enables us to encode generative effects using abelian
objects and concepts. The value of the lifting comes from the following proposition:

Theorem 9.2.4. We have Φ(s ∨ s′) 6= Φ(s) ∨ Φ(s′) if, and only if, the sequence:

ΦLLs(⊥) −−−→ ΦLLs(s)⊕ ΦLLs(s
′)

ΦL(f−f ′)−−−−−→ ΦLLs(s ∨ s′) −−−→ 0

is not exact, at either ΦLLs(s ∨ s′) or ΦLLs(s)⊕ ΦLLs(s
′).

Proof. We know that the sequence:

LS(⊥) −−−→ LS(s)⊕ LS(s′)
f−f ′−−−→ LS(s ∨ s′) −−−→ 0

is always exact. We apply ΦL to the sequence, and consider sequence:

ΦLLS(⊥) −−−→ ΦLLS(s)⊕ ΦLLS(s′)
ΦLf−ΦLf

′
−−−−−−→ ΦLLS(s ∨ s′) −−−→ 0

Note that as ΦL is additive, we always have:

ΦLLS(s)⊕ ΦLLS(s′) = ΦL

(
LS(s)⊕ LS(s′)

)
.

By commutativity of the abelian veil-lift diagram, where LP Φ = ΦLLS, we get the
canonical sequence:

LP⊥
h−−−→ LP Φ(s)⊕ LP Φ(s′)

g−g′−−−→ LP Φ(s ∨ s′) −−−→ 0

Note that Φ(⊥) = ⊥ and that:

g = LP (Φ(s) ≤ Φ(s ∨ s′)) = ΦLLS(s ≤ s ∨ s′) = ΦLf. (9.1)

A similar relation holds for g′.
If Φ(s∨s′) = Φ(s)∨Φ(s′), then the sequence (9.1) is exact by Property (ii.) of the

lifting LP . Conversely, if the sequence (9.1) is exact, then LP Φ(s∨ s′) is the cokernel
of h. By property (ii) of the lifting, we have that the cokernel of h is LP (Φ(s)∨Φ(s′)).
Note that we always have a map:

LP Φ(s ∨ s′)→ LP (Φ(s) ∨ Φ(s′))

induced by Φ(s ∨ s′) ≤ Φ(s) ∨ Φ(s′). As the cokernel is unique (up to isomorphism),
the map LP Φ(s∨ s′)→ LP (Φ(s)∨Φ(s′)) is an isomorphism. By Property (i.) of the
lifting, we necessarily have Φ(s ∨ s′) = Φ(s) ∨ Φ(s′).

Generative effects are now encoded in the loss of exactness. It can be subtle to
know how it is encoded in this loss of exactness. That will depend on where exactness
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is lost. If the resulting sequence is exact ΦLLs(s)⊕ ΦLLs(s
′) then inequality is fully

encoded in the loss of surjectivity of the rightmost map. If not, then factorizing
the sequence might fix part of the non-exactness issue. Specifically, notice that if
ΦL(f − f ′) is an epimorphism, then it is the cokernel of some map. We return to this
issue in the last section of the chapter.

A main question is: does an abelian veil-lift exist for every veil? The answer is
yes. The answer is also affirmative in a very general setting. We will discuss such a
lift in the last section on semi-lattices. The generality of the lift however does have
drawbacks as will be discussed. It is then a question of how well does a veil-lift use
the structure of the problem: how tight of a lift can we find?

We will generally be discussing liftings and abelian veil-lifts, in this chapter, for
various structures.

9.2.3 Why do we care about an abelian veil-lift?

The abelian lift allows us to encode the inequality due to generative effects into a loss
of exactness in exact sequences. This loss of exactness can be measured via homo-
logical methods. We can then extract (co)homological objects from the systems that
encode their potential to generate effects, their generativity. We can then use those
objects to link the phenome of the interconnected system to its separate subsystems,
through the use of long exact sequences, despite the presence of generative effects.

9.3 Sets as abelian groups.

As a start, we can encode the information we seek into the dimension of an abelian
group, through free abelian group constructions.

Given a set Σ, we define ZΣ to be the free abelian group generated by the basis
Σ. The elements ZΣ can be thought of as set maps Σ → Z, and addition + in the
group consists of pointwise addition of the corresponding maps. The free abelian
group construction defines a canonical inclusion map ι : S → ZS of sets, where an
element a of Σ is identified with the functions that map a to 1 and everything else to
0. Given a subset S ⊆ ZΣ, we denote by 〈S〉 the subgroup generated by S. Thus if S
is a subset of Σ, we abuse notation and denote by 〈S〉 to be the subgroup generated
by ι(S).

Proposition 9.3.1. The functor 2Σ → Ab-grp sending:

• A subset S ⊆ Σ to ZΣ/〈S〉.
• An inclusion S ⊆ S ′ to the canonical surjection ZΣ/〈S〉 → ZΣ/〈S ′〉.

is a lifting.

Proof. As 〈S ∪ S ′〉 = 〈S〉+ 〈S ′〉, the sequence:

ZΣ → ZΣ/〈S〉 ⊕ ZΣ/〈S ′〉 → ZΣ/〈S ∪ S ′〉 → 0

is exact. The conditions (i.) and (ii.) of a lifting then directly follow.
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The lifting can be used to encode information in kernels or cokernels of certain
maps. For instance, let us consider the following situation.

9.3.1 A simple instance of generativity.

Let Σ be a finite set. We define Φ : 2Σ → 2{∗} such that:

Φ(S) =

{
{∗} if S = Σ
∅ if S 6= Σ

The pair (2{∗},Φ) is then a veil on 2Σ. In words, although two subsets of Σ may not
be equal to Σ, their union may be. The veil then obviously sustains generative effects
as, for instance, Φ(S ∪ SC) 6= Φ(S) ∪ Φ(SC) for every proper subset S of Σ.

We can devise an appropriate lifting for the situation, that extends to an abelian
veil-lift.

Proposition 9.3.2. Let s1, · · · , sn be the basis elements of ZΣ. The functor L : 2Σ →
Ab-grp2 that sends:

• A subset S ⊆ Σ to the linear map 〈s1 + · · ·+ sn〉 → ZΣ/〈S〉
• An inclusion S ⊆ S ′ to the diagram:

〈s1 + · · ·+ sn〉
id−−−→ 〈s1 + · · ·+ sn〉y y

ZΣ/〈S〉
L⊆−−−→ ZΣ/〈S ′〉

is a lifting.

Proof. Let us denote s1 + · · ·+ sn by s. The following diagram commutes:

〈s〉 〈s〉 ⊕ 〈s〉 〈s〉 0

ZΣ ZΣ/〈S〉 ⊕ ZΣ/〈S ′〉 ZΣ/〈S ∪ S ′〉 0

.

The top row is exact. As 〈S ∪ S ′〉 = 〈S〉 + 〈S ′〉, the bottom row is also exact. The
conditions (i.) and (ii.) of a lifting then directly follow.

Note that a sequence of linear maps corresponds to a ladder diagram. The systems
are lifted to linear maps, and the phenomes then become encoded in the kernel of
those maps.
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Proposition 9.3.3. The following commutative diagram:

Ab-grp
ker←−−−−−−−−− Ab-grp2

free

x L

x
2{∗}

Φ←−−−−−−−−− 2Σ

is an abelian veil-lift.

Proof. The diagram is commutative as Φ(S) = {∗} if, and only if, 〈s1+· · ·+sn〉 ∈ 〈S〉.
The functor free where ∅ 7→ 0 and {∗} 7→ Z is trivially a lifting. The functor L is a
lifting by Proposition 9.3.2. The ker functor is also known to be left-exact, see e.g.
[Ada17g].

In this particular setting, we have:

Proposition 9.3.4. For every s and s′, the following sequence:

0→ L(S ∪ S ′)→ L(S)⊕ L(S ′)→ L(S ∪ S ′)→ 0

is exact.

Proof. We have 〈S ∪ S ′〉 = 〈S〉 + 〈S ′〉 and 〈S ∩ S ′〉 = 〈S〉 ∩ 〈S ′〉. The obtained
commutative ladder then has exact rows.

Generative effects are sustained whenever the sequence:

0→ kerL(S ∩ S ′)→ kerL(S)⊕ kerL(S ′)→ kerL(S ∪ S ′)→ 0

fails to be exact at kerL(S∨S ′). As ker is left-exact, the sequence will however always
be exact at kerL(S ∧ S ′) and kerL(S)⊕ kerL(S ′). We can however recover the loss,
and obtain a long exact sequence:

0→ kerL(S ∩ S ′)→ kerL(S)⊕ kerL(S ′)→ kerL(S ∪ S ′) δ−→ · · ·

· · · δ−→ cokerL(S ∪ S ′)→ cokerL(S)⊕ cokerL(S ′)→ cokerL(S ∪ S ′)→ 0

The object kerL(S ∪ S ′) can then be related to other constituents of the exact
sequence. We refer the reader to [Ada17a] and [Ada17g] for the details.

9.3.2 A refinement.

As a refinement of the example, we can choose to decide the presence of a distinguished
subset U of Σ. We can modify the veil Φ appropriately to get ΦU : 2Σ → 2{∗} such
that:

ΦU(S) =

{
{∗} if S ∩ U = U
∅ if S ∩ U 6= U

The pair (2{∗},ΦU) is again a veil, and:
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Proposition 9.3.5. Let u1, · · · , um be the elements of the basis of ZΣ belonging to
U . The functor LU that sends:

• A subset S to a linear map 〈u1 + · · ·+ um〉 → ZΣ/〈S〉
• A inclusion S ⊆ S ′ to a morphism:

〈u1 + · · ·+ um〉
id−−−→ 〈u1 + · · ·+ um〉y y

ZΣ/〈S〉
L⊆−−−→ ZΣ/〈S ′〉

is a lifting.

Proof. The proof is similar to that of Proposition 9.3.2.

In this case, we again obtain an abelian veil-lift:

Proposition 9.3.6. The following commutative diagram:

Ab-grp
ker←−−−−−−−−− 2Ab-grp

free

x LU

x
2{∗}

ΦU←−−−−−−−−− 2Σ

is an abelian veil-lift.

Proof. The proof is similar to that of Proposition 9.3.3

We can however obtain a tighter abelian veil-lift by use of the following lifting:

Proposition 9.3.7. Let u1, · · · , um be the elements of the basis of ZΣ belonging to
U . The functor L that sends:

• A subset S to a linear map 〈u1 + · · ·+ um〉 → ZΣ/〈S〉

• A inclusion S ⊆ S ′ to a morphism:

〈u1 + · · ·+ um〉
id−−−→ 〈u1 + · · ·+ um〉y y

ZU ⊕ ZΣ/〈S〉
L⊆−−−→ ZU ⊕ ZΣ/〈S ′〉

is a lifting.

Proof. A direct sum of two exact sequences is exact. The diagram ladder we obtain
commutes and has exact rows. The last needed detail is 〈S ∪ S ′〉 = 〈S〉+ 〈S ′〉.

The cokernel object is smaller than of the previous case, and keeps more exactly
what we need for the system to recover exactness.
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9.4 Lifting equivalence relations.

A relation on Σ is a subset of Σ × Σ. A relation on Σ is said to be an equivalence
relation if it is reflexive, symmetric and transitive.

The equivalence relations on Σ can be partially ordered by refinement to yield a
lattice Equ-Rel(Σ). We have E ≤ E ′ if a ∼ b in E implies a ∼ b in E ′. If E and E ′

are equivalence relation, then E ∨ E is the relation E ∪ E ′ followed by a transitive
closure. It is the smallest transitive relation containing both E and E ′.

If E is a relation on Σ, we denote by IE the subgroup 〈i − j : i ∼ j in E〉 ⊆ ZΣ.
Thus, if E is an equivalence relation, we have a ∼ b in E if, and only if, a− b ∈ IE
Proposition 9.4.1. The functor L : Equ-Rel(Σ)→ Ab-grp sending:

• A relation E to ZΣ/IE.

• An inclusion E ≤ E ′ to the canonical surjective linear map ZΣ/IE → ZΣ/IE′.

is a lifting.

Proof. If E and E ′ are equivalence relations, we then have IE∨E′ = IE + IE′ .

As done in the previous section, the lifting can be used to encode information in
kernels and cokernels of certain maps.

9.4.1 A source of veils.

Consider a set map f : A→ B, then f induces a veil:

Equ-Rel(A)←− Equ-Rel(B) : f ∗

where f ∗EB is the relation on A generated by a ∼ a′ whenever f(a) ∼ f(a′) in EB.

Proposition 9.4.2. The map f ∗ is a veil.

Proof. The map f ∗ is clearly order-preserving. The set {EB : EA ≤ f ∗EB} admits a
minimum (finest) equivalence relation on B generated by f(a) ∼ f(a′) for all a ∼ a′

in EA.

The map f−1 induces an equivalence relation on A where a ∼ a′ if, and only if,
fa = fa′. This equivalence relation corresponds to f ∗(E0), where E0 is the discrete
(finest) equivalence relation on B.

The left adjoint of f ∗ (as part of a Galois connection) is:

f! : Equ-Rel(A) −→ Equ-Rel(B)

where f!(EA) is the equivalence relation on B generated by f(a) ∼ f(a′) whenever
a ∼ a′ in EA. In this case, we have f!(E ∨ E ′) = f!(E) ∨ f!(E

′). Meets, however, are
not preserved.
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9.4.2 Towards an abelian lift.

Let A and B be sets, and suppose E ∈ Equ-Rel(B). Recall that:

IE = 〈i− j : i ∼ j in E〉.

A set map f : A→ B induces a canonical linear map:

f : ZA → ZB

The set map f also induces a veil f ∗ and we get:

If∗E = f−1IE for every E ∈ Equ-Rel(B).

We then obtain the following commutative diagram:

0 0

If∗E IE

ZA ZB

ZA/If∗E ZB/IE

0 0

In this case, consider the composite map:

ZA → ZB → ZB/IE

Proposition 9.4.3. The kernel of the composite map ZA → ZB/IE is If∗E.

Proof. By the commutativity of the diagram, we have If∗E ⊆ ker(ZA → ZB/IE).
Indeed, every element of If∗E maps to 0 in ZB/IE. To show the converse inequality,
suppose x belongs to the kernel. Then f(x) ∈ IE as IE is the kernel of ZB → ZB/IE.
But If∗E = f−1IE, and so x ∈ If∗E.

We then obatin a lifting:

Proposition 9.4.4. The functor L : Equ-Rel(B)→ Ab-grp2 sending:

• A relation E to ZA → ZB/IE.
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• An refinement E ≤ E ′ to the diagram:

ZA ZA

ZB/IE ZB/IE′

id

is a lifting.

Proof. If E and E ′ are equivalence relations, we then have IE∨E′ = IE + IE′ . The rest
is standard by now, and follows similar proofs of lifings.

The lifting could be directly used to create a situation of generative effects have
an abelian nature, or could also be made part of an abelian veil. We will discuss the
abelian veil lift through an example.

9.4.3 A simple contagion application.

Let V be a set with two distinguished elements v and u. Given an undirected graph
over the vertex set V , we are interested in whether or not there is a path from u to
v in the graph. A typical interpetation is each node is either healthy or infected. If
a node is a neighbor of an infected node, it becomes infected and remains infected
forever. The question is whether or not u can become infected by v, and vice-versa.

Let G and G′ be undirected graphs over the vertex set V . Although both may
not admit a path connecting v and u, their combination G ∪G′ := (V,E ∪ E ′) may.
This situation sets up a veil as follows.

Let f be the canonical inclusion {u, v} → V , it induces a veil:

Equ-Rel({u, v})← Equ-Rel(V ) : Φ

The lattice Equ-Rel({u, v}), contains two elements, and is thus isomorphic to 2{∗}.
And we have:

Φ(E) =

{
{∗} if u ∼ v in E
∅ otherwise

An undirected graph G yields an equivalence relation where i ∼ j if, and only if, j
and j are connected via a path. Our system should then be seen as an equivalence
relation, and the phenome keeps whether u and v are connected via a path or not.

Corollary 9.4.5. The functor L sending:

• an equivalence relation E to the composite Z{u,v} → ZV → ZV /IE.
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• a refinement E ≤ E ′ to a diagram:

Z{u,v} id−−−→ Z{u,v}y y
ZV /IE

L≤−−−→ ZV /IE′

is a lifting.

We may further obtain an abelian lift:

Proposition 9.4.6. The following commutative diagram:

Ab-grp Ab-grp2

2{∗} Equ-Rel(V )

ker

free

Φ

L

is an abelian veil-lift.

Proof. The diagram commutes as ker(Z{u,v} → ZV /IE is isomorphic to Z if, and
only if, u ∼ v in E. Both functors free and L are lifting, and we know that ker is
left-exact.

The kernel of the map encodes the phenome, and the cokernel encodes the gener-
ative power of the system.

9.5 Equivalence relations with additional structure.

If (Σ, ·) is a monoid, then free abelian group ZΣ admits a ring structure with · as
the multiplicative operator. A monoid homomorphism f : M → N then lifts to ring
homorphism f : ZM → ZN . A congruence relation on a monoid M is an equivalence
relation on the underlying set of M that is compatible with the monoid structure.
Specifically, a congruence relation is an equivalence relation such that if i ∼ i′ and
j ∼ j′ then i · j ∼ i′ · j′. Equivalently:

Proposition 9.5.1. An equivalence relation is a congruence relation if, and only if,
for every k if i ∼ j then i · k ∼ j · k.

Proof. Let E be an equivalence relation and suppose that for every k if i ∼ j then
i · k ∼ j · k. We then have i · j ∼ i′ · j ∼ i′ · j′. The converse is immediate.

Let (M, ·) be a monoid. The congruence relations can be ordered by refine-
ment to yield a lattice Cong-Rel(M). The lattice Cong-Rel(M) is a sublattice
of Equ-Rel(M). Indeed, the meet and joins coincide in both lattices.

We again define:
IE = 〈i− j : i ∼ j in E〉 ⊆ ZM
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Note that as IE is an ideal, then i− j ∈ IE implies i · k − j · k ∈ IE. Similarly as in
the case of equivalence relations, we obtain:

Proposition 9.5.2. The functor L : Cong-Rel(M)→ R-Mod sending:

• A relation E to ZM/IE.

• An inclusion E ≤ E ′ to the canonical surjective linear map ZM/IE → ZM/IE′.

is a lifting.

Proof. If E and E ′ are congruence relations, we then have IE∨E′ = IE + IE′ .

Similarly, consider a monoid homomorphism f : M → N , then f induces a veil:

Cong-Rel(M)←− Cong-Rel(N) : f ∗

where f ∗EN is the congruence relation on M generated by m ∼ m′ whenever f(m) ∼
f(m′) in EN .

Proposition 9.5.3. The map f ∗ is a veil.

The veil f ∗ also admits a left-adjoint f! : Cong-Rel(M) −→ Cong-Rel(N) as in
the case of equivalence relations.

A similar treatment as that of the equivalence relations can be performed. The
monoid structure allows us to achieve a tighter lift than what would have been possible
by treating congruences as plain equivalence relations. A lifting can be achieved by
sending a congurence relation E to the map:

ZM → ZN → ZN/IE

When this map is viewed as a ZM -linear map, the kernel is f ∗(IE).
Remark: The module ZN/IE admits an ZM -module structure through retriction

of scalars via f .

9.5.1 Congruence relation on semilattices, and monotonicity.

A join semilattice (L,≤,∨) is a monoid. Recall that a closure operator on a semilattice
is a map c : L→ L such that:

A.1. a ≤ c(a)

A.2. if a ≤ b, then c(a) ≤ c(b)

A.3. cc(a) = c(a)

Let c be a closure operator, it induces an equivalence relation on L. Define a relation
∼ where i ∼ j if, and only if, c(i) = c(j).

Proposition 9.5.4. The relation ∼ is a congruence relation.

Proof. Reflexivity and symmetry follow immediately. As for transitivity, if i ∼ k and
k ∼ j, then c(i) = c(k) and c(k) = c(j), and thus i ∼ j.
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Furthermore,

Proposition 9.5.5. Every element c(i) is the maximum element of its equivalence
class.

Proof. The proof follows from A.1. and the antisymmetry of ≤.

Closure operators appear in many instance and can be accordingly used. The
most important fact is:

Proposition 9.5.6. A closure operator is uniquely determined by its set of fixed-
points.

Proof. Every element i in the lattice has a (unique) least fixed-point greater than it.
This least fixed-point is c(i).

We refer the reader to [Ada17c] for more details on closure operators, and their
implication on cascading phenomena. In particular, let Closure-op(L) be the lattice
of closure operators on L ordered c ≤ c′ if, and only if, for all i, c(i) ≤ c′(i).

Proof. The map Φ : Closure-op(L) → L sending a closure operator to its least
fixed-point is a veil.

Proof. We refer to [Ada17b] Section 2 for a proof and more details.

A closure operator can then be seen as a congruence relation, and thus admits a
lifting as defined in the previous subsection. The ideal Ic is then defined as 〈i−c(i)|i ∈
L〉. Finally if f : L→ L′ is join semilattice homomorphism, then as we have seen:

Corollary 9.5.7. The map f ∗ : Cong-Rel(L′)→ Cong-Rel(L) is a veil.

We can lift the situation accordingly to an abelian setting. As a quick example,
we refer to [Ada17b] to an application of closure operators to contagion phenomena.
The lifting then directly applies there.

9.6 Sheaves and sections.

This section will illustrate a simple use of sheaves. This section is by far not ex-
auhaustive of the potential applications of sheaves, and only illustratively touches
upon the very tip. The example is as follows.

276



9.6.1 The illustrative example.

Let G be a directed graph, and let H be a subgraph of the graph. Given a subgraph
G′ of G, we are interested in deciding whether or not it contains H as a subgraph. Al-
though G′ and G′′ may not contain H separately, they may contain H once combined.
All those in this section are assumed with labeling.

Formally, the situation is as follows. Let G be a directed graph, with vertex set
V and arc set A. Let Sub(G) be the set of subgraphs of G. We can order Sub(G)
by inclusion to obtain a lattice. Our space of systems is Sub(G), and we have a veil
Φ : Sub(G)→ 2{∗} such that:

Φ(G) =

{
{∗} if G contains H
∅ otherwise

And indeed, generative effects are sustained in general.
We will devise an abelian veil-lift for the problem through the use of sheaves. The

lattice Sub(G) is a distributive lattice. And indeed, we can declare a topology on the
graph G by making its subgraphs its open sets. This topology will be the base space
of the sheaf in concern.

9.6.2 Interlude on sheaves.

The theory of sheaves can be generally developed through the use of sites and Grothendieck
topologies. We restrict here to sheaves defined over topological spaces. Sites and
Grothendieck topologies will not be discussed in this chapter. Whenever X is a topo-
logical space, we will typically denote by O the lattice of its open subsets. The lattice
O is always distributive.

Definition 9.6.1. A presheaf F of abelian groups on a topological space (X,O) con-
sists of the following data:

• An abelian group F (U) for every open set U .

• A linear map FU⊆V : F (V )→ F (U), termed restriction map, for every U ⊆ V .

Such that FU⊆U = idU for every U and FU⊆W = FU⊆V ◦ FV⊆W if U ⊆ V ⊆ W .
Remark: Whenever s ∈ V and U ⊆ V , for ease of notation, we denote FU⊆V (s) by
s|U . An element s ∈ F (U) is termed a section of U .

Thus, a presheaf of abelian groups is only a functor from O to Ab-grpop. This
data may be further given patching requirements to yield the notion of a sheaf.

Definition 9.6.2. A presheaf F is said to be a sheaf if:

i. Let V be an open set, {Ui} be an open cover of U and si ∈ F (Ui) a section for
each i. If si|Ui∩Uj

= sj|Ui∩Uj
for all i and j, then there exists an s ∈ F (V ) such

that s|Ui
= si for each i.

ii. Let V be an open set, {Ui} be an open cover of V , and s ∈ F (V ). If s|Ui
= 0

for all i, then s = 0.
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Note that i. and ii. together imply the existence (i.) and uniqueness (ii.) of a
common section.

Most importantly, sheaves are related together through morphisms.

Definition 9.6.3. Let F and G be pre-sheaves over a space (T,O). A morphism
f : F → G is a collection of maps fU : F (U) → G(U), for every open U , such that
the diagram:

F (U)
fU−−−→ G(U)

⊆
y ⊆

y
F (V )

fV−−−→ G(V )

commutes, for every V ⊆ U .

Every sheaf can be regarded as a presheaf by forgetting the patching conditions.
Morphisms of sheaves are then simply morphisms of presheaves, whenever the domain
and codomain sheaves are regarded as presheaves.

Definition 9.6.4. A morphism of sheaves F → G is a morphism of presheaves.

One class of morphism, we will be interested in, are those that are monic, and
behave like injective maps. These yield the notion of a subsheaf.

Definition 9.6.5. Let F be a sheaf. A subsheaf G of F is a pair (G, s) consisting of
sheaf G with a morpshism s : G→ F whose components sU are all injective maps.

Whenever the morphism (component of a subsheaf) is clear from the context, we
forget about it, and consider only the object G as the subsheaf.

The sheaves (of abelian groups) over a topological space (X,O) along with their
morpshisms form a category Ab-shv(X).

The category Ab-shv(X) is abelian. For instance, the presheaf assigning the
trivial 0 group to every open set is a sheaf. The morpshisms also admit a notion of
kernel, cokernel and image. We then have a notion of exact sequences.

Definition 9.6.6. A sequence of sheaves:

· · · −−−→ Fi−1
fi−1−−−→ Fi

fi−−−→ Fi+1 −−−→ · · ·

is said to be exact at Fi whenever im fi−1 = ker fi. A sequence is said to be exact if
it is exact at every i.

Exactness for sheaves can be checked over stalks. But we will not need them in
this chapter, and so we will not define them.

Finally, as X is the whole topological space, it is itself an open set.

Definition 9.6.7. We define Γ(X,−) : Ab-shv(X) → Ab-grp to be the functor
sending a sheaf F to the group F (X).

The functor Γ(X,−) is termed the global section functor. We will be using this
functor to encode the phenome in our abelian-veil lift. The global section functor is
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known to be left-exact but not right-exact. Whenever exactness fails on the right, it
will be an indication of generativity.

We will lift our systems (the subgraphs in our case) to become sheaves. Intercon-
nection of systems will then coincide will an exact sequence. Generative effects will
then cause a loss of exactness when applying a suitable functor.

Back to graphs.

The sheaves on a graph G viewed as a topological space (G,Sub(G)) admit a fairly
easy description. They can be uniquely specified on the join irreducible components
of the graph. The join irreducible components of the graph are the vertices and the
edges. Every subgraph admits a unique decomposition as join irreducible compo-
nents. By condition i. of a sheaf, the sections on all the subgraphs can be determined
accordingly.

Given a directed graph G, we define the set maps h : A → V and t : A → V to
send an arc to its head and tail, respectively.

Definition+Proposition 9.6.8. A sheaf F on a the graph (G,Sub(G)) is:

• an abelian group F (v) for all v ∈ V .

• an abelian group F (e) for all e ∈ A.

• a group homomorphism F (e)→ F (he) for all e ∈ A.

• a group homomorphism F (e)→ F (te) for all e ∈ A.

A sheaf is then a presheaf defined over the sublattice of join-irreducible open sets of
G.

As corollaries of this reduction, we get:

Corollary 9.6.9. If F is a subsheaf of F ′, then F ′/F is the sheaf defined by F ′/F (v) =
F ′(v)/F (v) and F ′/F (e) = F ′(e)/F (e) for all vertices v and arcs e.

Corollary 9.6.10. A sequence 0 → F → F ′ → F ′′ → 0 is an exact sequence of
sheaves on G if, and only if, the sequence 0 → F (v) → F ′(v) → F ′′(v) → 0 is exact
for all v, and the sequence 0→ F (e)→ F ′(e)→ F ′′(e)→ 0 is exact for all e.

Our goal is to define a sheaf that captures the structure of the problem. For a
throughout study of sheaves on graphs, we refer the reader to [Fri11] or [Fri15].

9.6.3 Detecting the full graph.

Let G be a weakly connected graph. Meaning that if we forget the directionality
of the arrows, then the resulting undirected graph would consist of one connected
component. In case, G is not weakly connected, we can simply restrict the analysis
on a weakly connected component.

Given a directed graph G, we define the set maps h : A → V and t : A → V to
send an arc to its head and tail, respectively.
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Definition 9.6.11. We define Z(G) to be the sheaf on (G,Sub(G)) such that:

• F (v) = Z for all v ∈ V .

• F (e) = Z for all e ∈ A.

• F (e)→ F (he) = id for all e ∈ A.

• F (e)→ F (te) = id for all e ∈ A.

The global section of the sheaf, for a weakly connected graph, is simply Z.

Proposition 9.6.12. For every weakly connected digram G, we have Γ(G,Z(G)) = Z.

Proof. We have that the arcs {ei}i forms an open cover of G. Consider a section si
for each ei. Either si = sj for all i, j or (as G is weakly connected) si 6= sj for some ei
and ej sharing a vertex v. If si = sj for all i, j, then s = si ∈ Γ(G,Z(G)). If si 6= sj
for some ei and ej sharing a vertex v, then si|v 6= sj|v and a global section with si’s
as restrictions cannot then be constructed.

For every graph G, non-necessarily weakly connected, the global section of Z(G)
would yield Zm, where m is the number of weakly connected components in the graph.

We will be interested in a class of subsheaves of Z(G). Let H be a subgraph of
G, we define Z(G)|H to be the subsheaf of Z(G) such that:

• F (v) = 0 if, and only if, v /∈ V (H).

• F (e) = 0 if, and only if, e /∈ A(H).

In this case, the restriction map are either id or 0. The subsheaves encode the
phenome of the subgraphs:

Proposition 9.6.13. Let G be a weakly connected component. We have:

Γ(G,Z(G)|H) =

{
Z if H = G
0 otherwise

Proof. If H 6= G, then some arc e in G is not present in H. Then every section s in
Γ(G,Z(G)|H) restricts to 0 on e. As all non-zero restriction maps are id and the graph
is weakly connected, then s restricts to 0 on all other vertices and edges. Indeed, s
restricts to 0 on h(e) and v(e). In turn, it restricts to 0 on all the arcs whose either
endpoint is either h(e) and v(e). The contagion process goes on. By property ii. of
the sheaf, we get that s is 0.

Those subsheaves then enable us to define a lifting:

Proposition 9.6.14. The functor L sending:

• A subgraph H to the morphism Z(G)→ Z(G)/Z(G)|H , and
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• An inclusion H ⊆ H ′ to a canonical diagram of sheaves:

Z(G) Z(G)

Z(G)/Z(G)|H Z(G)/Z(G)|H′

id

L(⊆)

is a lifting.

Proof. Condition (i.) is clearly met. To check condition (ii.), we have an commutative
diagram:

Z(G) Z(G)⊕ Z(G) Z(G) 0

Z(G) Z(G)/Z(G)|H ⊕ Z(G)/Z(G)|H′ Z(G)/(Z(G)|H + Z(G)|H′) 0

.

The top row is clearly exact. The bottom row can also be seen to be exact, through
the use of Corollary 9.6.9 and Corollary 9.6.10. The sheaf Z(G)|H + Z(G)|H′ can be
computed by taking linear sums of abelian groups (as subgroups of Z) pointwise on
the irreducible components.

This lifting thus induces an abelian veil-lift:

Proposition 9.6.15. The following commutative diagram:

Ab-grp
Γ(G,−)◦ker←−−−−−−−−− Shv(G)2

free

x L

x
2{∗}

Φ←−−−−−−−−− Sub(G)

is an abelian veil-lift.

Proof. The functor ker and Γ(G,−) are both left exact. See [Ada17g] for a discussion
on ker. All the remaining required pieces have been derived in this section.

Furthermore, this abelian veil-lift is specifically such that it preserves the common
subgraph:

Proposition 9.6.16. For every subgraphs H and H ′, the sequence of sheaves:

0→ Z(G)|H∩H′ → Z(G)|H ⊕ Z(G)|H′ → Z(G)|H∪H′ → 0

is exact.

Proof. Exactness can be easily checked on the irreducible components, i.e. the edges
and the vertices.
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Applying the global section functor may cause a loss exactness on the right, indi-
cating generativity. This loss can be remedied by computing cohomology objects.

Recovering exactness.

We compute the derived functor of the global section functor. Only the first cohomol-
ogy objects (or derived functor) is non-trivial as the graph is a Noetherian topological
space with dimension 2.

To compute the objects, let F be a sheaf on the digraph G(V,A), and define:

dh :=
⊕
e∈A

F (e)→
⊕
v∈V

F (v) dt :=
⊕
e∈A

F (e)→
⊕
v∈V

F (v)

Where dh (resp. dt) takes F (e) to F (he) (resp. F (te)). We then have Γ(G,F ) =
ker(dh − dt) and H(F ) := R1Γ(G,F ) = coker(dh − dt). We refer the reader to [Fri11]
Section 1.2.1 for a discuss on the cohomology groups of a sheaf defined over a graph,
and Section 1.4.2 for an injective resolution of a sheaf F .

Given a short exact sequence of sheaves:

0→ Z(G)|H∩H′ → Z(G)|H ⊕ Z(G)|H′ → Z(G)|H∪H′ → 0

We get a six-term exact sequence in cohomology:

0→ Γ(G,Z(G)|H∩H′)→ Γ(G,Z(G)|H)⊕ Γ(G,Z(G)|H′)→ Γ(G,Z(G)|H∪H′)→ · · ·
· · · → H

(
Z(G)|H∩H′

)
→ H

(
Z(G)|H ⊕H

(
Z(G)|H′

)
→ H

(
Z(G)|H∪H′

)
→ 0

Of course, H is not the (first) derived functor of Γ(G,−)◦ker. The functor ker is also
not exact.

Concrete example.

For instance, let G be a cycle graph as follows:

a b

The lattice of open sets is depicted through a Hasse diagram. The vertices of the
diagram refer to the open sets, and the edges refers to an inclusion of open sets.

G

a→ b a← b

{a, b}

a b

∅
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The lattice is distributive, and its join irreducible elements are a,b (corresponding to
the two vertices) and a→ b, a← b (corresponding to the two arcs). The sheaf Z(G)
can then be represented on the Hasse diagram as:

Z

Z Z

Z⊕ Z

Z Z

0

The global section is indeed Z as can be seen on the topmost element. Let H and H ′

be the following two subgraphs:

a b a b

Their corresponding sheaves Z(G)|H and Z(G)|H′ can be represented as:

0

Z 0

Z⊕ Z

Z Z

0

0

0 Z

Z⊕ Z

Z Z

0

Their common sheaf Z(G)|H∩H′ can be represented as:

0

0 0

Z⊕ Z

Z Z

0

For every proper subsheaf of Z(G), the group of global section is the 0 group. We
can then form the following exact sequence:

0→ Z(G)|H∩H′ → Z(G)|H ⊕ Z(G)|H′ → Z(G)|H∪H′ → 0
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Computing the cohomology objects, and forming the long exact sequence yields:

0→ 0→ 0⊕ 0→ Γ(G,Z(G)|H∪H′)→ Z2 (H(i),H(i′))−−−−−−→ Z⊕ Z→ H(Z(G)|H∪H′)→ 0

As H(i) and H(i′) have to be (by symmetry) isomorphic (non-zero) maps, we get
Γ(G,Z(G)|H∪H′) = Z and H(Z(G)|H∪H′) = Z.

Detecting a subgraph. Detecting subgraphs may be achieved through the use of
the (direct or inverse) image functors. Indeed, a subgraph of G is, by definition, only
an open subset of the topological space underlying G. The details of this approach
will not be further pursued in this chapter.

In general topological spaces. Directed graphs can be replaced by connected
topological spaces. The problem then becomes that of deciding whether subspaces
cover the whole space or not.

We can again define the constant sheaf Z(X) on the whole space X, and consider
corresponding subsheaves to represent the subspaces of X along the lines of what was
done in this section.

Another source of abelian veils. Rather than deciding whether coverings are
full or not, we can consider a continuous map f : X → Y . The map lifts to functor
f ∗ : Shv(Y )→ Shv(X). The functor admits a right adjoint f∗ : Shv(X)→ Shv(Y ).
The functor f∗ is a left-exact functor, and can be used in certain abelian lifts. The
chapter will however not pursue this direction.

9.7 All veils admit an abelian veil lift.

The following section is derived as a consequence of the development on liftings and
veil-lifts in [Ada17g]. We have defined a presheaf to be a functor from O to Ab-grpop.
The definition of a presheaf extends to have an arbitrary lattice (and more generally a
category) as a base space. Presheaves can also be dualized. We will use copresheaves
to define an abelian veil lift for an arbitrary veil.

Let L be a lattice. A presheaf on L taking values in D is a contravariant functor
L → D. A copresheaf on L taking values in D is a covariant functor L → D. The
category of copresheaves on L taking values in D is denoted by LD.

Proposition 9.7.1. The functor h : L → LSet sending:

• An element s to − 7→ hom(s,−)

• An inclusion s ≤ s′ to the unique morphism of copresheaves h(s)→ h(s′)

is a lifting (not abelian) in the sense of [Ada17g].

Proof. The functor h is known as the Yoneda embedding (see e.g. [ML98] Ch III)
and is known the satisfy the required properties.
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We define free : LSet → LAb-grp to be the functor such that for every copresheaf
F , we have that freeF (e) = Z(F (e)) is the free abelian group generated by F (e).

Proposition 9.7.2. The functor free ◦h is an abelian lifting.

Proof. The functor h preserves connected colimits in the case of preorders, and free
preserves all colimits being a left adjoint. Their composition free ◦h then satisfies
property (ii) of an abelian lifting. Property (i) follows as both h and free reflect
isomorphisms. Indeed, every isomorphism on free abelian groups is induced by an
isomorphism (i.e., a bijection) on their generating sets.

This lifting induces a veil-lift:

Theorem 9.7.3. The following commutative diagram:

Ab-grpP Φ!←−−−−−−−−− Ab-grpS

free ◦h
x free ◦h

x
P

Φ←−−−−−−−−− S

is an abelian veil-lift.

Proof. The details of the proof lie outside the scope of the chapter. We refer the
reader to [Ada17g] for a proof of the statement.

The construction of Φ! lies outside the scope of the chapter, and refer the reader
to [Ada17g] for the details. This lift, as it applies to every join-semilattice, is very
general. The goal is to always find better lifts by exploiting the specific structure of
the problem.

9.8 Concluding remarks.

Various other liftings may be found, and many situations provided in this chapter may
be further generalized. Abelian lifts are discussed in more generality in [Ada17g]. The
goal hereon is to develop adequate lifts for various situtations generative effects or
classes of veils.
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Chapter 10

Conclusion

We begin by ending the thesis with three remarks.

The notion, and the definition, of generative effects depends neither on the ques-
tion asked nor on the answer to that question. As such, starting with the notion of
generative effects, there are multiple questions that may be asked. Given however the
fundamental presence of the inequality (or non-isomorphism), once the veil is applied,
we view the most natural and fundamental question as that of mending it. We thus
pursued this particular direction. Yet many other directions are also very much worth
pursuing.

Homological methods (and thus the use of abelian veil lifts) are not the only means
to relate the behavior of the system to its other constituents, namely to answer the
particular question posed. There are other (extended) means, e.g., either through
non-abelian homological algebra or homotopical methods.

Finally, the question and thus very likely the answer may admit a different math-
ematical interpretation. In this thesis, they rely on a loss of exactness and then on
a fix of the loss. It may be possible to replace colimits and non-preservation of col-
imits by the veil by another operation and non-commutativity (or non-preservation)
condition. The form of the question remains unchanged, but the mathematics may
change. Also the physical or intuitive interpretation of the phenomenon may also
change, and would need to be adapted accordingly.

10.1 Further directions.

The developed theory is solid, but it has much to evolve and grow into its full poten-
tial. We next describe three rough directions of future investigation.

10.1.1 More connections to systems, risk and failures.

The practical boundary of the theory should be further pushed. The theory already
accounts for several classes of examples. Its reaches can be further expanded to more
realistic models of cascading phenomena and its tools can be further refined to deal
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with large scale issues. The theory of D-modules, and algebraic analysis, already put
to use in systems theory may provide us with a good route. It would also immensely
benefit from settling important cases. The list of potential directions along those lines
is non-exhaustive.

10.1.2 Further algebraic development.

The homological algebra development barely reaches the full development in the field.
The use of derived categories should be come into play to elucidate the situation more.
Grothendieck topologies, sheaves and toposes ought to play a more prominent role.
Many ideas from algebraic geometry and scheme theory can be incorporated. Spectral
sequences can be further brought into the picture to enhance the computational power
of the theory. Homological methods are not the only means to recover the link. Non-
abelian methods and simplicial methods also extend the scope. Homotopical algebra
then gains a place. Elements from K-theory will also prove to be very relevant. The
language in the thesis has intentionally relied on only most elementary concepts in
functorial language. Much is to be gained from more intricate constructs, not to
mention higher category theory. The goal of such a thrust should not be seen as
a mathematical exercise. The development needs to be well attached to a systems-
theoretic intuition and interpretation.

10.1.3 Syntax, semantics and languages.

There is much to understand in the separation and interplay between syntax and
semantics in systems theoretic issues. J. C. Willems’ behavioral approach to systems
theory is advocating constructions of systems in a topos (thus cartesian closed) via
colimits. The category of systems (in the behavioral sense) then immediately admits
an internal language, coinciding with intuitionistic logic. This realization provides
a glimpse into a formal language of systems and a formal analogy between physical
systems and programs. The interplay of languages, syntax and semantics has much
to offer in providing a sound theory of modeling. Many ideas of model theory and
categorical logic ought to come into picture.

The languages arising in this context are very fitting to a theory of interaction.
Our intent goes further into giving a vivid understanding and development of lan-
guages suited for the purpose of understanding interaction-related events. The goal
in this respect consists of figuring out ways (if ever possible) to capture syntactically
homological ideas or intuition.

288



Bibliography

[Ada17a] Elie M Adam. Chapter 2 : Generativity and interactional effects: an
overview. PhD Thesis, MIT, 2017.

[Ada17b] Elie M Adam. Chapter 3 : Where do cascades come from? PhD Thesis,
MIT, 2017.

[Ada17c] Elie M Adam. Chapter 4 : Towards an algebra for cascade effects. PhD
Thesis, MIT, 2017.

[Ada17d] Elie M Adam. Chapter 5 : On the abstract structure of the behavioral
approach to systems theory. PhD Thesis, MIT, 2017.

[Ada17e] Elie M Adam. Chapter 6 : Interconnection and memory in linear time-
invariant systems. PhD Thesis, MIT, 2017.

[Ada17f] Elie M Adam. Chapter 7 : Cascading phenomena in the behavioral ap-
proach. PhD Thesis, MIT, 2017.

[Ada17g] Elie M Adam. Chapter 8 : Generativity and interactional effects: the
general theory. PhD Thesis, MIT, 2017.

[Ada17h] Elie M Adam. Chapter 9 : How to make cascade effects linear? PhD
Thesis, MIT, 2017.

[Ada17i] Elie M Adam. Systems, generativity and interactional effects. PhD Thesis,
MIT, 2017.

[AGV72] Michael Artin, Alexandre Grothendieck, and Jean-Louis Verdier. Théorie
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